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SAFEWAY Project Synopsis 

 

 

 

According to European TEN-T guidelines, due consideration must be given to the risk 

assessments and adaptation measures during infrastructure planning, in order to improve 

resilience to disasters. SAFEWAY’s aim is to design, validate and implement holistic 

methods, strategies, tools and technical interventions to significantly increase the 

resilience of inland transport infrastructure. SAFEWAY leads to significantly improved 

resilience of transport infrastructures, developing a holistic toolset with transversal 

application to anticipate and mitigate the effects extreme events at all modes of disaster 

cycle: 

1. “Preparation”: substantial improvement of risk prediction, monitoring and 

decision tools contributing to anticipate, prevent and prepare critical assets for the 

damage impacts; 

2. “Response and Recovery”: the incorporation of SAFEWAY IT solutions into 

emergency plans, and real-time optimal communication with operators and end 

users (via crowdsourcing and social media);  

3. “Mitigation”: improving precision in the adoption of mitigation actions (by impact 

analysis of different scenarios) together with new construction systems and 

materials, contributing to the resistance & absorption of the damage impact. 

SAFEWAY consortium has 15 partners that cover  multidisciplinary and multi-sectorial 

business fields associated with resilience of transport infrastructure in Europe: national 

transport infrastructure managers & operators, a main global infrastructure operator, 

partners able to provide various data sources with large coverage in real time, 

comprehensive ITC solutions, and leading experts in resilience, risk databases, remote 

sensing-based inspection, and decision systems based on predictive modelling. 

SAFEWAY will carry-out 4 real case studies distributed through 4 countries, linked to 5 

corridors of the TEN-T Core Network. SAFEWAY has as main expected impacts: 

1. at least 20% improvement in mobility; and  

2. at least 20% lower cost of infrastructure maintenance. 

 



 
 

 

D3.1 – Data Acquisition Report 5 

 

Document Information 

Document Name Data Acquisition Report 

Version No. V1.0 

Due date Annex I 31/10/2019 

Report date 05/09/2019 

Number of pages 121 

Lead Author Angelo Amodio (Planetek), Vincenzo Massimi (Planetek),  

Belén Riveiro (UVIGO); Mario Soilán (UVIGO) 

Other Authors Anna Maria De Florio (PKI) 

Ana Sánchez (UVIGO) 

Pablo del Rio (UVIGO) 

Carlos Perez-Collazo (UVIGO)  

Dissemination level Public 

Planetek’s internal 
reference 

pkm109-07-1.0_D3.1_Data_Acquisition_Report 

 

Document History 

Ver. Date Description Authors Checked by 

0.1 26/04/2019 Creation of the document V. Massimi C. Perez-Collazo 

0.2 03/05/2019 Structure and format C. Perez-Collazo  

0.3 01/08/2019 Issue for internal review 

V. Massimi;  
A. De Florio 

C. Perez-Collazo 

A. Amodio 

0.4 04/09/2019 Issue after internal review M. Soilán  V. Massimi 

1.0 06/09/2019 Quality Check C. Perez-Collazo M. Soilán 

 

Document Approval 

Ver. Name Position in project Beneficiary Date Visa 

1.0 Dr Belén Riveiro Project Coordinator UVIGO 06/09/2019 BR 

 



 
 

 

D3.1 – Data Acquisition Report 6 

 

Executive Summary 

This document aims to offer a detailed description of the remote sensing platforms 
that will be used for the multiscale data acquisition of the transport networks within 

the case studies of SAFEWAY project. 

The remote sensing technologies will be divided in the document into two groups: 

 satellite technologies, equipped with radar and optical sensor, to monitor a 

wide area obtaining a synoptic view of the state of the infrastructures and 

of the surrounding area; 

 terrestrial remote sensing technologies, to obtain geometric and 

radiometric data from the surveyed environments with high accuracy and 

resolution. 

The decisions on which specific technologies will be used in SAFEWAY, and to what 
extent, should meet the necessities of the owners or operators of the 

infrastructures within the case studies defined at the beginning of the 
project. From these end user needs, a number of monitoring scenarios in 
the different case studies can be defined, and a clear data acquisition 

protocol can be addressed. 
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Glossary of Terms 

ALS Aerial Laser Scanning 

MLS Mobile Laser Scanning 

MMS Mobile Mapping System 

TLS Terrestrial Laser Scanning 

LiDAR Light Detection and Ranging 

OS Optical satellite 

RS Radar satellite 

Pilot 

Near-life operational environment designed to test and validate the 

effectiveness and transferability of technologies and methodologies 
defined in the framework of the SAFEWAY project. 

Demonstration 

site 

A particular geographical location or transport network infrastructure 

section within a pilot, where one or more project technologies or 

methodologies are going be tested and validated in relation to one or 

more adverse events (natural or human-made). 

Scenario 

An outline of an event together with the assessment of the 

consequences that it may have on a transport infrastructure (i.e. 

affecting one or more critical assets and/or disrupting users) according 

to a set of predefined and measureable aspects or parameters. 

Scenarios are defined within the so called ‘scenario-based risk analysis’ 

which is the process of analysing a set of multiple scenarios with the 

aim of identifying potential risks and their linked hazards, to increase 
preparedness to handle them and minimize their impact. 

Event 

An event that may result in loss of life, health or stability, monetary 

losses or damage to the environment, DSB (2014). In SAFEWAY the 

focus is on adverse events in terms of malfunctioning of infrastructure 

- i.e., caused either by natural events (e.g., extreme weather events, 

earthquakes, landslides, etc.) and by human-made events (e.g., vehicle 
accidents, deficient maintenance, terrorism actions, etc.). 
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1. Introduction 

This document aims to offer a detailed description of the remote sensing platforms 
that will be used for the multiscale data acquisition of the transport networks within 

the case studies of SAFEWAY project.  

One of the main objectives of SAFEWAY project is to improve the resilience of 
transport infrastructures, anticipating and mitigating the effects of extreme events 

at all modes of the disaster cycle: (1) Preparation, (2) Mitigation and (3) Response 
and Recovery. As shown in Table 1, each dimension of resilience can be divided in 

a set of subdimensions and correspondent topics. This document is linked to 
infrastructure monitoring, that is, to the preparation dimension of resilience. 
Infrastructure monitoring can be thought of as the continual collection and review 

of meaningful data about the infrastructure. The interpretation of this data enables 
infrastructure management: Decisions about infrastructure capacity, availability, 

security or maintainability will be more accurate if the known data about the 
infrastructure is reliable and up to date; and a better decision making in this regard 
is directly related to one of the main and scientific technological objectives of 

SAFEWAY: 

 To achieve 15% savings in maintenance costs, by improving structural 

health monitoring (specially ageing assets) and thus, propose retrofitting 
renewal of elements to reduce the current estimated expenditure in Europe. 

In order to fulfil this objective, Working Package 3 of the project proposes to 

employ different remote sensing technologies to collect data from the 
infrastructure following a multi-scale and multi-resolution strategy, feeding the 

Infrastructure Information Models (IIM) to be developed in SAFEWAY.   

These remote sensing technologies will be divided into two groups that allow the 
aforementioned multiscale analysis of the infrastructure: First, satellite 

technologies, equipped with radar and optical sensor,  allow to  monitor a wide 
area obtaining a synoptic view of the state of the infrastructures and of the 

surrounding area, both in term of stability and changes that may affect the 
infrastructure’s resilience, without any installation on the ground. Then, terrestrial 
remote sensing technologies take advantage of the capabilities of LiDAR sensors 

to obtain geometric and radiometric data from the surveyed environments with 
high accuracy and resolution, which together with several other sensors (image, 

thermographic, meteorological), are mounted on static or mobile platforms that 
collect and synchronize data from the different sensors.  

The decisions on which specific technologies will be used in SAFEWAY, and to what 
extent, should meet the necessities of the owners or operators of the 
infrastructures within the case studies defined at the beginning of the project. 

From these end user needs, a number of monitoring scenarios in the different case 
studies can be defined, and a clear data acquisition protocol can be addressed. 

With this context, this document will contain the following information: 

 A review regarding the state of the art on remote monitoring of transport 
infrastructures, with special emphasis on current remote sensing-based 
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solutions employed on the European infrastructure, and applications derived 
from the usage of remote sensing technologies (Section 2).  

 A review regarding the state of the art on remote sensing technologies and 

systems that collect data for the applications seen in the previous section 
(Section 3). 

 A description of the end-user needs for their study cases which justify the 
usage of the technologies that are proposed in this document (Section 4).  

 A description of the specific scenarios that will be addressed within the case 

studies of the project, for the proposed technologies, and the data 
acquisition protocols (Section 5).  

 The performance indicators / specifications of the data acquisition platforms 
(Section 6). 

Table 1: Dimensions of resilience 

Dimensions of 
resilience 

Effect (time) Subdimensions Topics 

Preparation 

Short-Term and 

Long-Term 

Prediction 
Meteorological 

Structural 

Monitoring 

RS – Satellite 

RS - Terrestrial 

Contact 

Decision  

Mitigation 
Resistance 

 
Absorption 

Response and 
recovery 

Short-Term 

Mobility  

Communication 
ICT 

Psychological 

Emergency  
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2. SoA on Remote Monitoring of Transport Infrastructures 

2.1 Satellite technology 

Satellite technologies, both optical and radar, have been proved to be useful in 

different monitoring applications. A non-exhaustive list of examples includes the 
stability evaluation of infrastructures and the environment, the continuous 
monitoring of the urban/non-urban changes, risk assessment support related to 

the natural hazard like landslide, subsidence, flooding, etc. and as a consequence 
it can be considered as a powerful information source to support the improvement 

of the infrastructure resilience. 

2.1.1 Optical satellite technology 

The field of space-borne optical remote sensing has made significant progress 

since the launch of the first Landsat satellite in the early 1970s. Advances have 
been made in all aspects of optical remote sensing data, including improved 

spatial, temporal, spectral and radiometric resolutions, which have increased the 
uptake of these data by wider user communities.  

The usefulness of optical remote sensing data in monitoring global and regional 

terrestrial ecosystems often depends on their spatial and temporal resolutions. In 
many applications, high spatial and temporal resolution is needed. However, due 

to limitations imposed by instrument field of view and swath width it is not always 
possible to achieve high spatial and temporal resolutions. Traditionally, sensors 
with high temporal resolutions (1–3 days) (e.g. NOAA AVHRR, Terra and Aqua 

Satellites) usually acquire data in coarse spatial resolutions (>250 m) owing to the 
wide field of view, while those with medium spatial resolutions (<100 m) with low 

field of view often acquire data at a coarse temporal resolution (e.g. 16-day revisit 
time for the Landsat series). To overcome this limitation, programmable/tasking 
satellites have been launched in the past decades that can acquire data at both 

high temporal (1–3 days revisit time) and high spatial resolutions (1–30 m), 
allowing focus on critical study areas. 

Examples of optical sensors capable of acquiring both high temporal and spatial 
resolution data include satellite systems such as RapidEye, QuickBird, WorldView 
and Pleiades. Even though these sensors fulfil the requirement of high spatial and 

temporal resolution, to achieve high spatial resolution, satellites carrying these 
sensors tend to be in lower orbit, thereby reducing their swath width and requiring 

more imagery to cover regional to global scale studies. The launch of new satellite 
sensors in the last decade, like Landsat 8 and the European Copernicus Sentinel 

missions, represents a step forward in the availability and use of remote sensing 
data with an improved spatial resolution (10–60 m) combined with a high revisit 
time of five days and at a large swath (290 km for Sentinel-2). 

Furthermore, in the recent past, many companies have developed even smaller 
optical satellites (micro- or nano-satellites, sometimes called cube-sats) that are 

relatively cheap to build and deploy on orbit, enabling mass production. Examples 
of these micro-satellites include the Skybox imaging Skysat satellites, Planet labs 
Dove satellites and UrtheCast satellites. Due to the relatively cheap cost of 
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assembling and deploying micro-satellites, these companies have launched or 
intend to launch swarms of them, which, thanks to their large numbers, will be 
able to revisit and photograph large regions of Earth several times per day, but in 

limited spectral bands (typically visible and broadband near-infrared capabilities 
only). Finally, as opposed to some of the conventional commercial imaging 

satellites that only collect images when tasked to do so, these microsatellites have 
the capacity to continuously collect data, ensuring global coverage.  

2.1.2 Radar satellite technology 

During the last decades radar satellite technologies have proven their usefulness 
to monitor the Earth thanks to the plenty of applications that can exploit their data. 

More and more application opportunities have emerged, thanks to the improved 
capabilities of the new space radar sensors in terms of both resolution and revisit 
time. Currently, different space-borne SAR data in L-, C- and X-band are available 

for monitoring applications.  

Thanks to the all-weather, day-night capability to detect and quantify accurately 

small ground surface deformations, Synthetic Aperture Radar (SAR) 
Interferometry (InSAR) techniques are attractive for different areas of risk 

management such as monitoring of subsidence, volcanoes, tectonic movements, 
urban areas and infrastructure and slope instabilities. In particular, the technique 
allows detecting and monitoring millimetric displacements occurring on selected 

point targets exhibiting coherent radar backscattering properties. Successful 
applications to different geophysical phenomena have been already demonstrated 

in literature (Bovenga et al., 2012; Nutricato et al., 2017; Massimi, 2018; Massimi, 
Forenza and Alisiconi, 2018). 

Furthermore, the available archive data from the European Space Agency (ESA) 

missions ERS-1/2 and ENVISAT (ENV), allows performing ground instability 
analysis back in time almost all over the Earth, complementing the currently 

running Sentinel-1 mission available since 2014 on almost all the world.  

Throughout this section, the state of the art regarding the monitoring of both road 
and railway network using optical and radar technologies is being described, 

focusing on the most recent trends, applications, and processing methodologies. 

2.1.3 Roads and Railways monitoring  

Data from optical remote sensing can have a great value for monitoring different 
natural or anthropic phenomena that can have potential impacts on transport 
networks maintenance and safeness.  

In general, a change detection application could support in different ways the 
identification of specific locations that need maintenance and/or where safeness 

issues may arise due to some variations from the standard situation.  

Change detection algorithms applied to the optical data may be of different nature 
according to the targeted objects, and of course the spatial and temporal resolution 

of the input data determines the size of what can be “detected” and the 
phenomenon that can be “monitored”. 

If we refer to the Sentinel-2 data, which represent today a great opportunity for 
their provision at no cost and for their revisit time of 3-5 days (depending of the 
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latitude) and a spatial resolution up to 10 meters in the visible and near infrared 
spectral range, the change detection applications may target different phenomena 
potentially impacting the transport network.  

Sentinel-2 opens a large scale of new applications allowing to continuously monitor 
changes on the ground over huge area of interest (regional to national scale) 

highlighting hot spots of changes that, once detected, could be further inspected, 
if deemed necessary, with greater detail using very high resolution satellite images 
and visual inspection.  

Digital Change Detection algorithms can provide binary land cover “change/no-
change” information by automatically detecting the spatial regions within a bi-

temporal image pair where meaningful change is likely to have occurred, then a 
human operator (or another process) can analyse the changes using his/her 
knowledge. 

For change detection, using a pair of images, three main categories of methods 
could be used: 

 Simple Detection: use Mean Difference, Ratio Of Means or Root Mean Square 
Differences of the relevant bands (typically visible and near infrared bands). 

 Normalized index change detections: produce normalized indicators related 
to the targeted change to be detected (e.g. built-in areas) and compare 
them.  

 Post Classification Comparison: make supervised classification of the pairs 
and compare results (e.g. land cover comparison, Built-up Areas 

comparison). 

Monitoring examples using optical remote sensing for specific thematic 
applications potentially impacting the transport networks maintenance and 

safeness are: 

Monitoring the evolution of artificial surfaces 

The automatic detections can generate alerts, that can activate further inspections 
with other techniques. 

Monitoring the coastal erosion 

Optical satellite data can be a precious source of information for monitoring coastal 
erosion and potential connected impacts on transport network infrastructures. 

Using comparative analysis of more optical images over time, coastal trends in 
terms of erosion, stability, and advancements can be identified and represented 
through geospatial indicators which can support decision making for new 

interventions and works. 

Monitoring wildfires 

Optical satellite data can be used to map the boundaries of fires occurring in many 
areas. Once this information has been achieved, time series of images are used to 
monitor -through vegetation or other spectral indexes- the vegetation 

regeneration process and, in general, the burnt area evolution over time after 
forest fires. 
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Monitoring examples using radar remote sensing for specific thematic applications 

potentially impacting the transport networks maintenance and safeness are: 

Displacement monitoring of roads and railways infrastructures  

The historical and continuous acquisition of radar data by means of MTI algorithms 
makes it possible to continuously monitor both the structural motion of roads and 

railways and the third-party induced displacement  that may negatively impact the 
infrastructures. 

Flood mapping 

Data acquired from satellite based Synthetic Aperture Radar systems, such as 
Sentinel-1, with their ability to penetrate cloud coverage are also very useful to 

evaluate the extent of flooding events especially during or soon after the storms, 
when cloud coverage usually doesn’t allow the use of optical data. SAR sensors 
have very low return from water bodies making them an ideal tool for mapping 

flood extents. In a radar image, the delineation between water and non-water can 
be clearly delineated. 

In order to produce flood extents, the raw SAR data must first be pre-processed. 
The processing techniques include calibrating the pixel values and speckle filtering 

the data. The dataset must also undergo terrain correction to correct for effects 
such as foreshortening, layover, and shadow. Following this it can be transformed 
from ground range geometry to a specific coordinate reference system (e.g. 

WGS84). 

After the pre-processing stage a histogram of backscatter coefficients can be 

generated and is used to help determine a value which most accurately reflects 
the threshold between water and non-water. Finally, the resulting binary raster 
image can be converted into a vector  dataset for analysis with other existing 

datasets. 

Mapping of this nature has obvious applications in flood risk management and 

planning. It can assist engineers and planners make more informed decisions and 
so help reduce the risk from future floods. In addition, the fast turnaround possible 
between the data being acquired to the flood extents being produced means these 

maps could assist emergency services during a flood event. 

2.2 Terrestrial remote sensing technology 

Even though LiDAR technology popularity has significantly increased during this 
decade, this has been in development since the second half of the past century. 
Its development started in the 1960s with several applications in geosciences. 

Years later, land surveying applications appeared in the picture thanks to the use 
of airborne profilometers. This equipment resulted to be useful for deriving the 

vegetation height, by evaluating the returned signal (Link and Collins, 1981). 
During the 1980s and 1990s, the use of laser scanning for environmental and land 
surveying applications increased. In the second part of the 1990s, civil engineering 

related applications started to arise, but it was not until the last part of the century 
and the beginning of the new one when the first terrestrial devices for 3D 

digitalization performance appeared. From this point, numerous applications for 
different fields quickly raised (B Riveiro et al., 2016), and Terrestrial Laser 
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Scanning (TLS) proved to be the appropriate technology to use when detailed 3D 
models were required. With the evolution of technology, the resolution and quality 
of data given by laser scanning devices have been improved. And so, in these final 

years, mobile mapping systems are arising in order to perform high resolution 
surveys of large infrastructures (tunnels, roads, urban modelling…) in a short 

period of time. 

Nowadays, the main bottleneck for LiDAR technology is processing the large 
amount of data acquired with laser scanning devices. Throughout the years, many 

tools have been developed for point-cloud data processing. Most of these depend 
on manual or semi-automatic operations that have to be performed by a specialist 

in the field of geomatics. The current challenge is to develop tools for an efficient 
automation of data processing, using information provided by ALS, MLS or TLS. 

Many companies and research groups investing in this technology have allowed its 

fast development. With the appearance of machine learning algorithms, the 
tedious and hard processing tasks tend to disappear or be minimized. These tools 

allow, not only the development of advanced, efficient and intelligent processing, 
but also interpretation of data. One of the main objectives exploited is obtaining 

inventories for road, railway or urban management. Now, this has evolved and the 
trend is to obtain spatial models of infrastructures based on the fusion of geometric 
and radiometric data and monitoring the infrastructure behaviour and changes 

through the years. These models have a notorious potential for BIM (building 
information modelling) and AIM (asset information model) applications, allowing 

to have not only as-design representations of the asset but also as-built and as-
operate models which can be updated over time. 

Throughout this section, the state of the art regarding the monitoring of both road 

and railway network using LiDAR-based technologies is described, focusing on the 
most recent trends, applications, and processing methodologies. 

2.2.1 Road network monitoring 

The successful integration of laser scanners, navigation sensors and imagery 
acquisition sensors on mobile platforms has led to the commercialization of Mobile 

Laser Scanning systems meant to be mounted on vehicles such as regular vans or 
passenger cars, as it can be seen in Section 5.2. As these vehicles naturally operate 

along the road network, a large part of the existing research regarding the 
processing and understanding of the data collected by these systems has revolved 
around applications related with the monitoring of the road network. 

This section of the review will focus on those applications, which will be divided in 
two main groups: Road surface monitoring, and off-road surface monitoring. This 

conceptual division, which is considered by similar reviews of the field (Guan, Li, 
et al., 2016; Ma et al., 2018) will allow the reader to focus separately on different 
elements and features of the road network. 

2.2.1.1 Road surface monitoring 

The automatic definition of the ground has been one of the most common 

processes that are carried out using data from LiDAR-based sources. Although this 
application has been on the literature since the beginning of the century (Lohr, 
1998; Sithole, 2001) there has been a continuous research and improvement 



 
 

 

D3.1 – Data Acquisition Report 18 

 

motivated by two main factors: The remarkable improvement of the LiDAR-based 
systems, and the increased computational power available for research. 
Nowadays, LiDAR-based data has been used for automatically detecting and 

extracting not only the road surface but also different elements and features on 
the road such as road markings and driving lanes, cracks, or manholes. 

Furthermore, an efficient extraction of the road surface is typically a preliminary 
processing step that allows the separation of ground and off-ground elements 
when using 3D point clouds as main data source. Hence it is a process that can be 

found in a large proportion of works focused on object detection and extraction 
from 3D point cloud data. 

Road surface extraction 

Within the literature, different ways of organizing the existing knowledge on road 
surface extraction can be found. Ma et al. (2018) define three main methodological 

groups based on the data structure: (1) 3D-point driven, (2) 2D Geo-reference 
feature image-driven, and (3) Other data (ALS/TLS) driven. Differently, Guan, Li, 

et al. (2016) define four groups based on the processing strategy, which can be 
summarized in two larger groups: (1) Processes based on previous knowledge of 

the road structure and (2) Processes based on the extraction of features for 
identification or classification of the road surface. For the following analysis of the 
state of the art, the approach of Guan, Li, et al. (2016) will be taken as reference. 

In ¡Error! No se encuentra el origen de la referencia., a summary that has 
into account both approaches (based on the data structure and on the processing 

strategy) can be found. 

 Road surface extraction based on its structure: A common approach for road 
surface extraction relies on the definition of road edges that delineate its 

limits. This approach has been evolving since the beginning of this decade. 
Ibrahim and Lichti (2012) propose a sequential analysis that segments the 

ground based on the point density and then a Gaussian filtering to detect 
curbs and extract the road surface afterwards (Figure 1a). These steps are 
analogous in similar works, changing the curb detection method: Some 

works perform a rasterization (projection of the 3D point cloud in a gridded 
XY plane, generating two dimensional geo-referenced feature (2D GRF) 

images) and detect curbs using image processing methods such as the 
parametric active contour or snake model (Kumar et al., 2013; Kumar, 
Lewis and McCarthy, 2017) or image morphology (Rodríguez-Cuenca et al., 

2015a, 2016). Guan, Li, et al. (2014) generate pseudo scan lines in the 
plane perpendicular to the trajectory of the vehicle to detect curbs by 

measuring slope differences. Differently, a number of approaches have been 
developed for curb detection directly in 3D data, using point cloud geometric 
properties such as density and elevation (Yang, Fang and Li, 2013), or 

derived properties such as the saliency, which measures the orientation of 
a point normal vector with respect to the ground plane normal vector (Wang, 

Luo, et al., 2015) and has been successfully used to extract curbs or salient 
points in different works (Sánchez-Rodríguez et al., 2018; Soilán et al., 
2018). Xu, Wang and Zheng (2017) use an energy function based on the 

elevation gradient of previously generated voxels (3D equivalent of pixels) 
to extract curbs, and a least cost path model to refine them. Using voxels 
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allows to define local information by defining parameters within each voxel, 
and to reduce the computational load, so they are commonly used for road 
extraction (Douillard et al., 2011; Zai et al., 2018). Hata, Osorio and Wolf, 

(2014) propose a robust regression method named Least Trimmed Squares 
(LTS) to deal with occlusions that may cause discontinuities on the road 

edge detection. A different approach can be found in (Cabo et al., 2016), 
where the point cloud is transformed into a structured line cloud, and lines 
are grouped to detect the edges (Figure 1b). Although good results can be 

found among these works, most of them rely on curbs to define road edges, 
hence the extraction of the road surface will not be robust when it is not 

delimited by curbs, as it is the case of most non-urban roads. 
 Road surface extraction based on feature calculation: A different approach 

for road surface extraction is based on previous knowledge about its 

geometry and contextual features, which can be identified on the 3D point 
cloud data. Guo, Tsai and Han (2015) filter points based on their height with 

respect to the ground and then extract the road surface via TIN 
(Triangulated Irregular Network) filter refinement. Generally, the elevation 

coordinate of the point cloud is the key feature that is employed for road 

surface extraction: Serna and Marcotegui (2013, 2014) defined the λ-flat 
zones algorithm, which analyses the local height difference of the point 

cloud projected on the XY plane. Also, Fan, Yao and Tang (2014) employ a 
height histogram for detecting ground points as a pre-processing step on an 

object detection application. Another feature that is commonly used is the 
roughness of the road surface. Díaz-Vilariño et al. (2016) present an 
analysis of roughness descriptors that are able to classify different types of 

road pavements (stone, asphalt) with accuracy. Similarly, Yadav, Singh and 
Lohani (2017) employ roughness together with radiometric features 

(assuming uniform intensity as a property of the road) and 2D point density 
to delineate road surfaces from non-road surfaces. As it was the case for 
curb detection methods, there are scan-line based methods that rely on the 

point topology (Ying Zhou et al., 2014) or density (Che and Olsen, 2017) 
across the scan line for extracting the road surface. 

From this analysis, it can be seen that there exist a large number of works focused 
on the extraction of the ground or the road surface, but there is still not an 

established standard for this process, and it is typically designed ad hoc for a more 
complex final application.  
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Table 2: Summary of state-of-the-art works for road surface extraction 

  

PROCESSING STRATEGY 

Based on road structure 
(road edge delineation) 

Based on feature calculation 

Data 

structure 

2D GRF 

(Kumar et al., 2013; 
Rodríguez-Cuenca et al., 

2015a, 2016; Kumar, Lewis 
and McCarthy, 2017) 

(Serna and Marcotegui, 2013, 
2014) 

3D point 
cloud 

(Douillard et al., 2011; 

Ibrahim and Lichti, 2012; 
Yang, Fang and Li, 2013; 

Hata, Osorio and Wolf, 2014; 
Wang, Luo, et al., 2015; Xu, 

Wang and Zheng, 2017; 
Sánchez-Rodríguez et al., 

2018; Soilán et al., 2018; Zai 
et al., 2018) 

(Fan, Yao and Tang, 2014; Guo, 

Tsai and Han, 2015; Díaz-Vilariño 
et al., 2016; Che and Olsen, 2017; 

Yadav, Singh and Lohani, 2017) 

Scan lines (Cabo et al., 2016) (Ying Zhou et al., 2014) 

 

 

Figure 1: Road surface extraction. (a) Ibrahim and Lichti (2012) segment non-ground (left) and 
ground (centre) using a density-based filter. Then, a 3D edge detection algorithm based on local 

morphology and Gaussian filtering extracts road edges (right). (b) Cabo et al. (2016) scan lines are 
grouped based on length, tilt angle and azimuth, and the initial groups (left) are joined following 
predefined rules using the vehicle trajectory to define the road surface (right) 
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Road markings and driving lanes 

Derived from road extraction methods, there exists a vast literature focused on 
the automatic detection of road markings, which are highly important road 

elements as they are one of the main information sources for drivers and 
pedestrians. This automation may assist maintenance and inventory tasks, 

reducing both the cost of the process and the subjectivity of the inspection 
activities (Soilán et al., 2017). The main feature that allows the detection of road 
markings using 3D point clouds as data source is its reflectivity, which is translated 

into larger radiometric attributes of the 3D data. Most road marking detection 
works exploit this feature once the road pavement is extracted. For example Guo, 

Tsai and Han (2015) generate raster binary images based on the intensity of the 
road points and extract different classes of road markings. As it can be seen in 
Figure 2, the generation of binary images based on point cloud intensity is a 

common approach (Arias et al., 2015; Guan, Li, Member, et al., 2015; Riveiro et 
al., 2015; Yan et al., 2016; Soilán et al., 2017; Ma et al., 2019), being the principal 

differences among these works the features employed for road marking detection, 
and the classification methods employed: Some works rely on previous knowledge 

and heuristics to classify different road markings (Yu, Li, Guan, Jia, et al., 2015; 
Jung et al., 2019) while others follow a more recent trend based on machine 
learning (Soilán et al., 2017) or deep learning (Wen et al., 2019). A comprehensive 

summary of these methodological differences is shown in Table 3. As it can be 
seen, automatic road marking detection and classification using data from LiDAR 

scanners is more than feasible, and may be a standard data source not only for 
road marking inspection but for applications such as driving line generation (Zhao, 
2017; Ma et al., 2019; Ye et al., 2019). For other applications such as autonomous 

driving where real-time information is required, road marking recognition is carried 
out using RGB images analysed by machine learning or deep learning classification 

models (Li et al., 2017; Jia et al., 2018; Tian et al., 2018; Ding et al., 2019). 

 

Figure 2: Road markings and driving lanes. (a) Soilán et al. (2017) apply an intensity filter on the 
point cloud (left) and generate a 2D GRF image representing the road markings (right). (b) Yan et 

al. (2016) propose a scan line based method using the gradient of point intensity to detect road 
marking points on each scan line (left) and generate a 2D GRF image representing the road markings 
(right) 
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Table 3: Summary of state-of-the-art works for road marking extraction 

  
PROCESSING STRATEGY 

Detection process Classification process 

Data 
structure 

2D GRF 

Morphology 
Adaptive 

thresholding 
- Template matching (Guo, Tsai 

and Han, 2015; Soilán et al., 
2017) 

- Neural Networks (Soilán et al., 

2017) 

- Deep Learning (Wen et al., 2019) 

(Arias et al., 
2015; Guo, 

Tsai and Han, 
2015; Riveiro 

et al., 2015; 
Jung et al., 

2019) 

(Guan, Li, 
Member, et 
al., 2015; 

Kim, Liu and 

Myung, 
2017; Soilán 
et al., 2017) 

3D point 
cloud 

- Spatial density filter: (Yu, Li, 

Guan, Jia, et al., 2015) 

- Scan line separation: (Yan et 
al., 2016) 

- Deep Boltzmann Machines (Yu, 

Li, Guan, Jia, et al., 2015) 

Photogra
mmetry 

 
- Deep Learning (CNNs) (Li et al., 

2017; Tian et al., 2018) 

 

Road cracks and manhole covers 

Detecting and positioning road cracks is another relevant application that has been 

addressed by researchers using LiDAR-based technologies. Using 3D point clouds, 
Yu et al. (2014) extract 3D crack skeletons using a sequential approach based on 
a preliminary intensity based filtering, followed by a spatial density filtering, a 

Euclidean clustering, and a 𝐿1-median-based crack skeleton extraction method. 
However, 3D methods are not the most common approaches for crack detection, 

as the 3D point clouds are typically projected into 2D GRF images based on 
different features such as intensity (Guan, Li, Yu, et al., 2015) or minimum height 

(Chen et al., 2016), in order to detect road cracks. Guan, Li, Yu, et al. (2015) 
define an Iterative Tensor Voting, while Chen et al. (2016) perform convolutions 
with predefined kernels over their GRF images. Cracks can be also detected with 

other sensors that are typically mounted on MLS systems. There exist computer 
vision approaches that analyse images, as done by Gavilán et al. (2011) using line 

scan cameras; and there exist also approaches using Ground Penetrating Radar 
(GPR) (Venmans, Van De Ven and Kollen, 2016) and thermal imaging (Aparna et 
al., 2019). Another relevant road surface element, especially in urban 

environments, are manhole covers, which can also be automatically detected using 
3D point clouds. Guan, Yu, et al. (2014) use an analogous approach than for 

detecting cracks in (Guan, Li, Yu, et al., 2015), that is, generating a GRF image 
and applying a multi-scale tensor voting and morphological operations to extract 

manhole covers. Yu, Guan and Ji (2015) generate GRF images as well, but detect 
manhole covers based on a multilayer feature generation model and a random 
forest model for classification. 
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2.2.1.2 Off-Road surface monitoring 

In a number of infrastructure monitoring applications, the elements of interest are 
not the road surface or its elements, but different objects or infrastructure assets 

that play a relevant role on the correct performance of the network. This section 
will analyse the state of the art regarding the monitoring of those elements and 

assets, namely¡Error! No se encuentra el origen de la referencia.: traffic 
signs, pole-like objects and roadside trees. 

Traffic signs 

Traffic signs play a clearly important role in the transportation network as one of 
the main information sources for drivers, together with road markings. Their 

standardized geometry and reflective properties have encouraged researchers to 
develop different methods for the automatic detection and recognition of road 
markings from MLS systems data. Pu et al. (2011) shown that based on a collection 

of characteristics such as size, shape or orientation, it is possible to recognize 
different objects, provided previous knowledge on their geometry. Not only 

geometry but the radiometric properties (high reflectance) of traffic sign panels 
have been recurrently used for traffic sign detection. Ai and Tsai propose a traffic 

sign detection process which filters a 3D point cloud based on intensity, elevation 
and lateral offset (Ai and Tsai, 2016). The method is able to evaluate the 
retroreflectivity condition of the traffic sign panels, which is directly related to the 

wear and tear of the material and is a relevant feature for traffic sign monitoring 
(Ai and Tsai, 2014). Unlike road markings, there are only a few works that rely on 

2D GRF images for traffic sign detection. Riveiro et al. (2016) filter the point cloud 
by generating a 2D raster based on point intensity values, simplifying the detection 
of traffic sign panels using a Gaussian Mixture Model afterwards. Furthermore, 

they generate raster images on the plane of the detected traffic signs to recognize 
their shape. However, 3D point cloud data resolution is still not enough to extract 

semantic information of the traffic signs (Soilán et al., 2016b), hence that 
recognition is typically performed on RGB images from the cameras of the MLS 
system. Traffic sign panel detection primarily relies on an intensity-based filter of 

the 3D point clouds, followed by different filtering strategies, based on geometric 
and dimensionality features (Wen et al., 2015; Soilán et al., 2016a, 2016b; Huang 

et al., 2017; Guan et al., 2018) (Figure 3a). A different approach for traffic sign 
detection can be found in (Yu, Li, Wen, et al., 2016), where a supervoxel based 
bag-of-visual-phrases is defined, and traffic signs are detected based on their 

feature region description. Given that the 3D point clouds are spatio-temporally 
synchronized with 2D images in a MLS system, it is straightforward to extract 

images of the traffic sign panels and perform computer vision processes on them 
to extract semantic information: Some works rely on machine learning strategies 
such as Support Vector Machines using custom descriptors (Soilán et al., 2016b) 

or existing features such as Histogram of Oriented Gradients (HOG) (Tan et al., 
2016), while others rely on the more recent trend of Deep Learning, approaching 

to an end-to-end recognition process, using Deep Bolztmann Machines (Yu, Li, 
Wen, et al., 2016; Guan et al., 2018) or convolutional neural networks (Arcos-
García et al., 2017) (Figure 3b). These techniques are also employed using only 

imagery data (Gudigar et al., 2019; Jain et al., 2019). All the mentioned work is 
summarized in Table 4. 
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Figure 3: Traffic signs. (a) Soilán et al. (2016b) detect traffic sign panels applying intensity filters 
on a previously segmented point cloud (left), define geometric parameters for each traffic sign and 
project the panel on georeferenced RGB images (right). (b) Arcos-García et al. (2017) classifies those 
RGB images applying a Deep Neural Network that comprises convolutional and spatial transformer 

layers 

Table 4: Summary of state-of-the-art works for traffic sign detection 

  

PROCESSING STRATEGY 

Detection process Classification process 

Data 

structure 

2D GRF 
Intensity-based raster (Belén 

Riveiro et al., 2016) 
 

3D point cloud 

- Intensity-based filtering 
(Wen et al., 2015; Soilán 
et al., 2016a, 2016b; 

Huang et al., 2017; Guan 
et al., 2018) 

- Bag-of-visual-phrases (Yu, 
Li, Wen, et al., 2016) 

 

Photogramme
try 

 

- SVM (Soilán et al., 2016b; Tan 
et al., 2016) 

- Deep Boltzmann Machines (Yu, 

Li, Wen, et al., 2016; Guan et 
al., 2018) 

- CNN (Arcos-García et al., 

2017; Gudigar et al., 2019; 
Jain et al., 2019) 
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Pole-like objects 

Detecting pole-like objects is a common objective in 3D point cloud processing 
works, as their geometry is well defined and easily recognizable when monitored 

by a LiDAR-based system. They are typically used to detect street lights or power 
line poles (Cheng et al., 2014). Ground segmentation is usually a pre-processing 

step, as ground removal leads to an isolation of off-road objects. From that point, 
there is a large number of processing strategies to detect pole-like objects. Yu, Li, 
Guan, Wang, et al. (2015) group 3D points with an Euclidean cluster, refine them 

with a Normalized Cut segmentation and then construct a Pairwise 3-D shape 
context to detect pole-like objects with a similarity measurement. A 3-D shape 

feature is also developed by Guan, Yu, et al. (2016), and each object is compared 
against a bag of contextual-visual words (Yu, Li, Guan, et al., 2016). Similarly, 
Wang, Lindenbergh and Menenti (2017) develop a 3D descriptor (SigVox) using an 

Octree and principal component analysis (PCA) to get dimensional information at 
different levels of detail (Figure 4a). Other notable approaches include the 

application of anomaly detection algorithms (Rodríguez-Cuenca et al., 2015b), or 
the development of classification models such as Random Forests (Yan et al., 

2017) or Support Vector Machines (Wu et al., 2017) for shape features. In a second 
group of approaches, those that do not rely on ground segmentation as a 
preliminary step use to perform a voxelization of the 3D data, and pole-like objects 

are detected based on the voxelized structure. Cabo et al. (2014) perform a 
relatively simple study of the local structure of occupied voxels to define pole-like 

objects, and Li, Li and Li (2016) define an adaptive radius cylinder model given 
previously knowledge regarding the geometrical structure of a pole-like object. 
Supervoxels are also exploited for detecting pole-like objects, obtaining structure, 

shape or reflectance descriptors (Teo and Chiu, 2015; Wang, Wang, et al., 2015). 

Roadside trees 

With a LiDAR-based mobile system it is possible to map the presence of trees 
alongside the road network. As there is a correlation between vegetation and fire 
risk in a road environment, roadside tree detection processes are clearly beneficial 

in road network monitoring applications. As seen for traffic sings and pole-like 
objects, ground segmentation is usually the first pre-processing step, isolating 

above ground objects. Xu et al. (2018) propose an hierarchical clustering to extract 
trees’ nonphotosynthetic components (trunks and tree branches), formulating a 
proximity matrix to calculate cluster dissimilarity, and solving the optimal 

combination to merge clusters (Figure 4b). Other clustering algorithms employed 
for tree extraction are the Euclidean Cluster (Guan, Yu, Ji, et al., 2015; Huang et 

al., 2015), or, as in Li et al. (2016) work, a region growing based clustering in a 
voxelized space to distinguish between trunk and crown in a tree. Machine and 
Deep Learning models are also developed for tree classification. Zou et al. (2017) 

employ a Deep Belief Net (DBN) to classify different tree species from images 
obtained after a voxelization-rasterization process. Guan, Yu, Ji, et al. (2015) 

classify up to 10 tree species using waveform representations and Deep Boltzmann 
Machines. Dimensional features obtained from PCA analysis are also used for 
classification, with SVM (Huang et al., 2015) or Random Forests (Weinmann et al., 

2017) as classification models. 
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Figure 4. Pole-like objects and roadside trees. (a) Wang, Lindenbergh and Menenti (2017) recognize 
street objects using a voxel-based shape descriptor determined by the orientation of the significant 
eigenvectors of the object at several levels of an octree. (b) Xu et al. (2018) recognize trunks and 
tree branches by optimally merging clusters of points 

2.2.1.3 Current and future trends 

Throughout this section, different applications of LiDAR-based systems for road 
network monitoring have been reviewed. Most of the mentioned works have been 
developed in the last five years, and the number of publications is still increasing 

yearly. As LiDAR technology continues its evolution, there are more robust 
solutions for specific road monitoring applications, however, there is a lack of 

standards, in the industry, to apply when LiDAR data is automatically processed. 
In the last couple of years, the performance of Deep Learning in 2D images has 
led researchers to develop Deep Learning models for 3D data (Qi et al., 2016, 

2017; Tatarchenko, Dosovitskiy and Brox, 2017; Su et al., 2018), which are being 
developed to solve classification problems using 3D data acquired by MLS systems 

(Kumar et al., 2019; Luo et al., 2019; Wen et al., 2019). This paper presents an 
extensive literature review that describes different methods and applications for 
the monitoring of terrestrial transportation networks using data collected from 

Mobile Mapping Systems equipped with LiDAR sensors. 

2.2.2 Railway network monitoring 

Most of the works regarding railway infrastructure are developed using Mobile 
Laser Scanners, as previously presented at the introduction of this section. These 
are large infrastructures and the applications in which their point-clouds are 

employed usually require a high resolution. This is why MLS is the most appropriate 
technology to be used for railway networks, although there are some works 

developed using ALS or TLS data (Soni, Robson and Gleeson, 2014; Collin, 
Carreaud and Lançon, 2016; Arastounia, 2017). 

In this section, a summary of the most relevant applications of LiDAR data 

concerning the railway network is shown. One way of classifying the existing works 
in relation to railway infrastructure recognition and inspection may be attending to 
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the collection methods used to obtain the 3D point clouds. Likewise, Lou et al. 
(2018) proposed a classification based on the methods followed for classifying 
points. On this basis, three main categories were proposed: (i) data-driven and 

model-driven methods, using point features and geometrical relationships; (ii) 
learning-based methods, which use imagery data and/or MLS point data; and (iii) 

multi-source data fusion methods (Beger et al., 2011; Arastounia, 2012; Neubert 
et al., 2012; Yang, Fang and Li, 2013; Zhu and Hyyppa, 2014; Ma et al., 2018). 
Although other classification proposals can be also considered, the classification in 

this paper is made attending to the main goal, or application of each work (Figure 
5), as proposed in Che, Jung and Olsen (2019), where a review about object 

recognition, segmentation and classification using MLS point clouds in different 
environments, such as forest, railway and urban areas is presented. In addition, 
several figures (Figure 6 - Figure 10) provide extra context to some of the works 

cited throughout the subsequent sections. 

 

 

Figure 5: Classification of the railway network monitoring based on the application 

2.2.2.1 Railway inventory and 3D modelling 

The automatic classification of points forming specific objects is one of the first 
tasks that need to be developed in any area of study. Che, Jung and Olsen (2019) 

made a review to this end presenting different and broadly known techniques for 
object recognition and features extraction from MLS 3D point clouds. Al-Bayari 
(2019) has also presented a series of case studies in civil engineering projects 

using a mobile mapping system, but with specific programs for the post-processing 
of the extracted point clouds. And so Leslar, Perry and McNease (2010) in the 

railway field. They performed some preliminary classification of points in terms of 
the number of return of each point, and the remaining ones were manually selected 
and classified, using external programs and semi-automatic methods. 

In the railway network, the works from Arastounia are relevant when applying 
heuristic methods to classify points from MLS point-clouds. His algorithms follow 

a data-driven and model-driven approach (Lou et al., 2018), grouping points into 
railway objects’ classes (Arastounia, 2012, 2015; Arastounia and Elberink, 2016). 
Later on, he published a specific work regarding the automatic recognition of rail 

tracks and power line cables using TLS and ALS data, with better performance than 
the previous methodologies presented by the author (Arastounia, 2017). Following 

these advances, Sánchez-Rodríguez et al. (2018) developed an algorithm for MLS 
tunnel point cloud classification. They used not only heuristic methods but also 
SVMs (Géron, no date) for the classification of possible rails in the track. The 

results obtained in these two latter works are depicted in Figure 6. Regarding the 
use of classifiers, Luo, Jwa and Sohn (2014) used the Conditional Random Field 

(CRF) classifier to make a prediction with local coherence, resulting also in a 
context based classification of points into different railway objects. 
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Figure 6: Inventory and 3D modelling.(a) Arastounia (2017) classified rail tracks and contact cables 
using an improved region growing algorithm. Then, the catenary cables’ points are classified as they 

are placed in the neighbourhood of the contact cables. (b) Sánchez-Rodríguez et al. (2018) classified 
MLS data using dimensional analysis and RANSAC methods, and validated the rails’ classification with 

SVM algorithms 

Another option for LiDAR point cloud processing is converting them into 2D images. 
Zhu and Hyyppa (2014) directly made this conversion and classified data using 

image processing techniques. And mixing images with point clouds, Neubert et al. 
(2012) extracted of railroad objects from very high resolution helicopter-borne 
LiDAR and ortho-image data. They also used LiDAR data fusion methods to classify 

rails. This opens up a new idea for the process of laser scanning data using deep 
learning techniques to classify points, and so, Rizaldy et al. (2018) made a multi-

class classification of aerial point clouds using Fully Convolutional Networks (FCN), 
which is a Convolutional Neural Network (CNN) designed for pixel-wise 
classification. 

Next step should be the conversion of the classified points into 3D models. In this 
relation, there is not much work in the last years, but with the appearance of BIM 

and Digital Twin, it will soon become a need. Some authors have been using 
specific programs for that conversion (Kwoczynska, Sagan and Dziura, 2016), 
while others directly convert the LiDAR point-cloud data into 3D models. This 

application within the railway network still need to be developed. Most authors in 
this field based their research in specific elements of the infrastructure, and 

automatically detecting damage or pathologies in them. In the subsequent 
sections, a summary of the most critical works concerning this matter is shown. 

2.2.2.2 Rails 

One of the most extended practices when working with point-clouds in railway 
environments is the extraction of the tracks’ centreline. Beger et al. (2011) used 

data fusion of extremely high resolution ortho-imagery with ALS data to 
reconstruct railroad track centrelines. The images were used to obtain a first 
railroad track mask and laser points classified, and then, rail track centreline was 

approximated using an adapted RANdom SAmple Consensus (RANSAC) algorithm 
(Fischler and Bolles, 1981). Continuing with centre lines’ estimation, Elberink and 

Khoshelham (2015) proposed two different data-driven approaches in order to 
automate this process. First, they extracted the tracks from MLS point clouds. 
Then, centre lines were directly generated using the detected rail track points, or 

generating fitted 3D models and implicitly determining the mentioned centreline. 
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Railway tracks’ point-clouds may be extracted automatically from MLS data. 
Sánchez-Rodríguez et al. (2018) found possible rails according to the curvature of 
ground-points neighbourhood and then, they used SVM classifiers to verify the 

results obtained (Figure 7a). Also, Lou et al. (2018) developed a method to this 
end which processes data in real time. They exposed the validity of using a low 

cost LiDAR sensor (Velodyne) for performing mobile mapping surveys (Figure 7b). 
Stein (2018) also used low cost sensors, contributing with his thesis to the 
improvement of track-selective localization. He determined the railway network 

topology and branching direction on turnouts applying a multistage approach. More 
specifically, Stein, Spindler and Lauer (2016) proposed a model-based rail 

detection in 2D MLS data. They developed a spatial clustering to distinguish rails 
and tracks from other captured elements. 

 

Figure 7: Rails. (a) Sánchez-Rodríguez et al. (2018) classified them analysing also the point cloud 
curvature (elevation difference) and validated the results applying SVM classifiers. (b) Lou et al. 
(2018) detected rails based on their elevation difference together with their reflection characteristics 

For the creation of 3D models from rails’ point-clouds, Soni, Robson and Gleeson 
(2014) first extracted rail track geometry from TLS point clouds. Then, models 
were created for monitoring purposes. Later on, Yang and Fang (Yang and Fang, 

2014) also created railway tracks 3D models but from MLS point clouds. Which 
first, detect railway bed areas, then follow patterns and intensity data of rails to 

find tracks. Similarly, Hackel et al. (2015) detected rails and other parts of the 
track applying template matching algorithms (model-based) as well as support 
vector machines (feature based). The results show that this methodology can be 

used for data from any laser scanner system. 

Some authors go beyond railway tracks’ detection, and propose methods not only 

for classification but also for the inspection of these elements, as described in 
Section 2.2.2.5.  

2.2.2.3 Power line 

Most of the railway network uses aerial contact lines to provide energy supply to 
trains during operation. Therefore, monitoring of their composing elements it is 

essential for railway companies. To this respect, Jeon and Choi (2013) proposed a 
method based on RANSAC algorithms to automatically detect railroad power lines 
in LiDAR data. Then, iterative RANSAC and least square adjustment were used to 

estimate the line parameters and build the 3D model of railroad wires. As exposed 
in Section 3.2.1, the work from Arastounia (2015) stands out since he proposed 

an heuristic methodology for classifying points in the railway environment. This 
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calculates points’ neighbourhoods and recognises objects by their geometrical 
properties and topological relationships. Specifically, the recognition of overhead 
contact cables was developed applying PCA and region growing algorithms. 

Catenary and return cables are detected attending to their distribution in the 3D 
space with respect to the contact cable. In relation to this method, Pastucha (2016) 

used the MMS (Mobile Mapping System) trajectory to limit the search area 
vertically and horizontally for extracting the catenaries. Then, the method classifies 
points applying also RANSAC algorithms and geometrical and topological 

relationships. This also provides the location of cantilevers and poles or structural 
beams supporting the wires. Zhang et al. (2016) also used information from the 

MLS trajectory to extract significant data from it. They apply self-adaptive region 
growing methods to extract power lines, and PCA combined with information 
entropy theory method to detect junctions. 

A different concept is presented by Guo et al. (2016). Working with ALS point 
clouds, they presented a method for power line reconstruction, analysing the 

distribution properties of power-lines for helping the RANSAC algorithms in the 
wires’ reconstruction (Figure 8a). Using both laser scanning and imaging data, Fu, 

Chang and Liu (2018) automatically extracted the geometric parameters of the 
aerial power line without manual aiming. This could later be used as input 
information for the 3D modelling of the power line infrastructure. 

The unsupervised classification of points is still under development. Like in any 
other field, for the railway network there is not a standard to follow when 

developing and applying these algorithms. Since the distribution of the 
electrification system in the space is quite regular, Jung et al. (2016) proposed a 
classifier based on CRF. It takes into account both short and long range 

homogeneity of the cloud. For locally classifying points, SVM are used and ten 
target classes are obtained, representing overhead wires, movable brackets and 

poles, as shown in Figure 8b. Wang et al. (2018) presented also a power line 
classification method for detecting power line points and the power line corridor 
direction. They have based their investigation on the Hough transform, 

connectivity analyses and simplification algorithms. 

 

Figure 8: Power line. (a) Guo et al. (2016) classified ALS point clouds into power line cables using 
a JointBoost classifier and then used RANSAC to reconstruct the cables’ shape . (b) Jung et al. (2016) 
grouped points in MLS data using SVM classification results as inputs for the multi-range CRF model 
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2.2.2.4 Signalization 

Although the detection and classification of signals has been deeply and 
successfully developed in the roadway network (Section 2.2.1.2), not so much in 

the railway field. Presumably, the same techniques can be used for detecting rail 
signage. As will be presented in 2020 by Karagiannis, Olsen and Pedersen (2020), 

methods for detecting railway signs working with RGB or video images are being 
developed. They use image processing techniques and features extraction (Marmo, 
Lombardi and Gagliardi, 2008; Agudo et al., 2016) to locate the signage. Beyond 

these state-of-the-art results, they have implemented the Faster R-CNN 
(Convolutional Neural Network for object detection) for sign detection also in RGB 

images (Figure 9). 

 

 

Figure 9: Signalization. Karagiannis, Olsen and Pedersen (2020) implemented a R-CNN for sign 
detection using RGB images 

2.2.2.5 Inspection 

In the railway environment, as in many other fields, inspections should be carried 
out using non-destructive techniques (NDT). These do not intervene with the 
structural condition of the elements being inspected, and allow to repeat the tests 

as many times as necessary without causing any damage. Nowadays, different 
techniques are used, as presented in (Falamarzi, Moridpour and Nazem, 2019). 

Falamarzi, Moridpour and Nazem (2019) made a review concerning the main 
sensors and techniques used in the railway environment to detect damage. Some 

sensors categorized as NDT are ultrasonic testing (UT), eddy current (EC), 
magnetic flux leakage (MFL), acoustic emission (AE), electromagnetic acoustic 
transducers (EMATs), alternate current field measurement (ACFM), radiography, 

microphone and thermal sensors, among others. These detect defects from the 
surface to the internal part of the element being studied. High resolution and 

thermographic cameras are also good examples of NDT. They are widely used 
when performing visual inspections and applying image processing techniques for 
damage detection (Minbashi et al., 2016; Falamarzi, Moridpour and Nazem, 2019). 

Although, laser scanning is also a non-destructive technology that may be used 
for damage detection, there is not a defined technique for the inspection of the 

railway network. 
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The most common inspection developed in railway’s point clouds is the inspection 
of rail tracks and gauge clearance between them and the power line. In 2004, Blug 
et al. (2004) had already developed a method for using laser scanning data from 

the CPS 201 scanner for clearance measurements. Years later, Mikrut et al. (2016) 
determined the clearance gauge using MLS point clouds applying the 2D contours 

method. They use cross sections of the point clouds to create a 2D image and an 
operator reviews them to obtain suspicious areas. When using TLS data, Collin, 
Carreaud and Lançon (2016) proposed the use of the Infra-Red information in 

order to extract distortions. They compared information from different campaigns 
and then visually extract cracks, wear seepages and humid areas, among others. 

Continuing with this and together with points’ classification, Niina et al. (2018) 
performed a clearance check after the automatic extraction of rails matching their 
shape with and ideal rail head using the iterative closest point (ICP) algorithm 

(Besl and McKay, 1992). The objects inside the clearance and related to a contact 
line are detected by visual confirmation, as explained in Figure 10a. 

Concerning rails inspection, Chen et al. (2017) developed a methodology for 
comparing laser scanning data with a point cloud reconstructed from CAD models, 

in order to measure the existing rail wear. In relation with this part of the 
infrastructure, the railway ballast is also an important asset to take into account. 
The recent work from Sadeghi et al. (2019) showed a method for the development 

of a geometry index for ballast inspection using automated measurement systems 
(Figure 10b). 

 

 

Figure 10: Inspection. (a) Niina et al. (2018) extracted the rails’ top head in order visually inspect 
the clearance gauge. (b) Sadeghi et al. (2019) performed a ballast inspection based on a geometry 
index developed to this respect 

In the railway environment, as in many other fields, inspections should be carried 

out using non-destructive techniques (NDT). These do not intervene with the 
structural condition of the elements being inspected, and allow to repeat the tests 

as many times as necessary without causing any damage. Nowadays, different 
techniques are used, as presented in (Falamarzi, Moridpour and Nazem, 2019). 
Falamarzi et al. made a review concerning the main sensors and techniques used 

in the railway environment to detect damage. Some sensors categorized as NDT 
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are Ultrasonic Testing (UT), Eddy Current (EC), Magnetic Flux Leakage (MFL), 
Acoustic Emission (AE), Electro Magnetic Acoustic Transducers (EMATs), Alternate 
Current Field Measurement (ACFM), radiography, microphone and thermal 

sensors, among others. These detect defects from the surface to the internal part 
of the element being studied. High resolution and thermographic cameras are also 

good examples of NDT. They are widely used when performing visual inspections 
or applying image processing techniques for damage detection (Minbashi et al., 
2016; Falamarzi, Moridpour and Nazem, 2019). Although laser scanning is also a 

non-destructive technology that may be used for damage detection, there is not a 
defined technique for the inspection of the railway network. 

The most common inspection developed in railway’s point clouds is the inspection 
of rail tracks and gauge clearance between them and the power line. Blug et al. 
(2004) had already developed a method for using laser scanning data from the 

CPS 201 scanner for clearance measurements. Years later, Mikrut et al. (2016) 
determined the clearance gauge using MLS point clouds applying the 2D contours 

method. They use cross sections of the point clouds to create a 2D image and an 
operator reviews them to obtain suspicious areas. When using TLS data, Collin, 

Carreaud and Lançon (2016) proposed the use of the IR information in order to 
extract distortions. They compared information from different campaigns and then 
visually extract cracks, wear seepages and humid areas, among others. Continuing 

with this and together with points’ classification, Niina et al. (2018) performed a 
clearance check after the automatic extraction of rails matching their shape with 

and ideal rail head using the Iterative Closest Point (ICP) algorithm (Besl and 
McKay, 1992). The objects inside the clearance and related to a contact line are 
detected by visual confirmation. 

Concerning rails inspection, Chen et al. (2017) developed a methodology for 
comparing laser scanning data with a point cloud reconstructed from CAD models, 

in order to measure the existing rail wear. In relation with this part of the 
infrastructure, the railway ballast is also an important asset to take into account. 
The recent work from Sadeghi et al. (2019) showed a method for the development 

of a geometry index using automated measurement systems. 
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3. Remote Monitoring Technologies/Systems 

3.1 Satellite monitoring technologies 

3.1.1 Radar satellites 

Synthetic Aperture Radar (SAR) satellites provide continuous all-weather, day-
and-night worldwide imagery with high revisiting time acquired in a double orbit, 
ascending and descending. An InSAR system measures the phase difference 

between synthetic aperture radar (SAR) echoes backscattered from targets on the 
ground and received by two antennae located at slightly different positions (with 

a relative distance known as the spatial baseline). Through the processing of a 
time series of SAR images with Multi-Temporal Interferometry (MTI) algorithms, it 
is possible to measure the millimetre displacements of ground targets called 

persistent scatterers – PS or Distributed Scatterers- DS that correspond to human-
made objects (buildings and other engineered structures like roads and railways) 

and rock outcrops measuring the distance between the satellite and the objects 
itself with millimetre precision. These elements are characterized by the coherent 
backscattering of the phase signal in time. MTI algorithms make a distinction 

between Persistent Scatterers (PS) associated with a single pixel of the radar 
image and the Distributed Scatterers (DS) that are associated with a group of 

statistically homogenous pixels of the radar image.  

In short, the PS and the DS represent points (PS) or areas (DS) with high phase 
stability (or equivalently high coherence) of the signal reflected by the target 

objects on the ground, thanks to which it is possible to monitor a zone (in which 
they are present) even for a long period of time according to the availability of the 

images.  

To make distance measurements between the satellite sensor and the target on 
the ground, phase difference images (interferograms) are generated by exploiting 

radar images acquired over the same area during successive satellite passes. 

SAR acquisitions are in fact shifted over time and knowing a priori the topography, 

the ground and infrastructure displacements are measured with millimetre 
precision. When a series of SAR acquisitions is available over the area of interest, 
the MTI algorithms combine them into several differential interferograms.  

MTI is only little affected by bad weather and can provide long-term (years), 
regular (weekly-monthly), precise (mm) measurements of ground and 

infrastructures displacements over large areas (thousands of km2) obtaining 
spatially dense PS/DS (from hundreds to thousands measured points per km2).  

The standard output of a MTI application is typically provided as radar targets 
(PS/DS) positions (lat., long., height) and their average yearly displacement rates 
overlapped to a map or optical image. 

The strengths of MTI include: 

 -the wide area coverage (regional-global) combined with high spatial 

 resolution  (meters) and excellent precision (mm-cm) in the measurement 
 of the displacement; 
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 -the provision of regular, long term (years) and frequent (weeks/days) 
 information thanks to the availability of the radar acquisitions, some of 
 which (e.g. ESA’s data) are now free of charge. 

Thus, MTI extends the applicability of radar interferometry to monitor the ground 
and infrastructure stability from regional to local scale. 

The displacements are measured along the satellite line of sight (LOS), with 
incidence angles being between 20-50° and with the current satellites operating 
on polar orbits, mainly two independent measurements on opposite pass directions 

(ascending or descending) are possible with interferometry techniques, limiting 
the displacement vector measurement to the plane orthogonal to the south–north 

directionand it is also nearly impossible to retrieve movements in the satellite flight 
direction (azimuth), which is approximately north-south. Neverthless by combining 
LOS displacements from ascending and descending CSK datasets, it is possible to 

derive horizontal and vertical displacement maps. 

Nowadays, several satellite missions are available, providing interferometric SAR 

data at different wavelengths, spatial resolutions, and revisit times. In Table 10 
(see Appendix), the principal satellite missions are listed with those parameters 

which are relevant for the ground and infrastructures monitoring. 

3.1.2 Performance of radar monitoring 

The SAR satellite parameters, which impact on the quality of the MTI products, are 
the wavelength of the SAR signal (decreasing from L, ~23 cm, to C, ~5.5 cm, to 
X band, ~3.1 cm), the revisit time, the spatial resolution, and the orbital tube. The 

main figures that allow to select the optimal SAR sensor to be used for the ground 
and infrastructure monitoring are: the number of measurable coherent targets 

(CT) on the grounds (e.g. the PS/DS density), the maximum detectable 
displacement velocity, the revisiting time and a reliable and constant image 

acquisition plan.  

The density of detectable targets depends heavily on the ground cover, being in 
general highest over urban areas, thanks to the abundance of artificial structures 

with coherent backscattering. Both wavelength and spatial resolution can impact 
on the CT density. Several studies have proven that high-resolution data from CSK, 

TSX, and RSAT2 lead to a significant increase in the number of potential CT with 
respect to the data from medium resolution missions, such as ERS1/2, ENV, and 
RSAT1. There is limited information in the literature on the PS densities obtainable 

from L-band MTI, due to the few datasets available over Europe and suitable for 
MTI.  

Commercial high-resolution X-Band SAR sensors, such as the COSMO-SkyMed 
(CSK) and TerraSAR-X (TSX) constellations, acquire data with spatial resolution 
reaching metric values, and provide revisit times of up to a few days leading to an 

increase in the density of the measurable targets, as well as to improvements in 
the detection of nonlinear displacements.  

Medium resolution C-band SAR data have been thoroughly exploited for the ground 
displacement monitoring in the last two decades, thanks to the ERS-1/2 and 
ENVISAT-ASAR (ENV) missions, and RADARSAT-1/2 (RSAT1/2). 
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Considering the Sentinel-1 sensor that will be used in this project, the ground 
deformation is measured with a precision of 1.5 mm/year along the satellite’s line 
of sight. Horizontal localization of PS is provided with a precision of ± 10 m. The 

accuracy of the measures are guaranteed by a high level of error compensation of 
the MTI that allows the generation of time series analysis highlighting displacement 

trends over time. The major sources of errors for the MTI are the atmospheric 
disturbance and the topography influence that are removed using 25 or more 
multitemporal SAR images. 

Optical satellites 

In Figure 11, the principal satellite missions with main performances are listed with 

those parameters which are relevant for the ground and infrastructures 
monitoring. 

 

 

Figure 11: Some of the main optical sensors available in the last years 

 

3.2 Terrestrial monitoring technologies 

Laser scanner is a survey and monitoring technology based on obtaining 

measurements of distance between a LiDAR sensor and its surroundings, that is, 
every object detected by the laser beams emitted by the sensor. The result of this 
process is a dataset in the form of a point cloud containing the position of every 

detection point on those objects relative to the sensor. To further reference point 
positions in a global frame, other positioning sensors can be included into the laser 

scanner platform, either if this is static or mobile. The contribution of each 
component of the platform to the data acquisition process is explained through 
this section. 

3.2.1 Laser Scanner system components 

In order to determine the position of the points of the cloud acquired with a laser 

scanner at a global level, it is necessary to reference them within an appropriate 
coordinate system. First, the points are referenced to the local coordinate system 
of the LiDAR. Then, the location of the platform in a global coordinate system, for 

instance WGS84, is determined using navigation and positioning systems (Tao, 
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2000). Finally, the relative position and orientation of the LiDAR in the platform 
with regard to the navigation and positioning system is determined for the correct 
geo-referencing of the point cloud. This distance between the centre of the 

navigation system and the centre of other systems is known as lever arm or offset. 

3.2.1.1 LiDAR 

LiDAR (Light Detection And Ranging) technology is based on illuminating points of 
objects surrounding the scanner with a laser beam. The backscattered laser light 
is collected with a receiver and the distance to the point is calculated using one of 

the techniques explained later in this section. In order to correctly do so, the light 
returned by the object must be within the FoV (Field of View) of the receiver. 

Therefore, both the receiver and the emitter must be mounted and have apertures 
such that they share the same optical path (Wehr and Lohr, 1999). In the cited 
article, it is also described the Instantaneous Field of View (IFoV) as the narrow 

divergence of the laser beam, whose physical limit is determined by divergence of 
light. Due to this factor, the IFoV of the receiver must be bigger than that of the 

emitter. Photodiodes are used as receivers, recording the backscattered signal and 
deriving the ranging distance between the scanner and the target object as well 

as the remaining power of the signal, designated as intensity (Wujanz et al., 2017). 
PIN and APD (Avalanche Photo-Diode) are usually employed for this task, although 
there are other types of photo-detectors, like PMT (Photomultiplier Tube) (Kashani 

et al., 2015).  

Two range measurement techniques are used by laser scanners: Time-of-Flight 

(ToF) and Continuous Wave (CW) modulation. For Time-of-Flight (or pulse 
ranging), the distance between the laser emitter and the scanned object is 
calculated based on the time that it takes to the laser beam since it is emitted until 

the backscattered pulse is received. Ranging resolution achieved by this type of 
scanner is directly proportional to time counter resolution, with a maximum range 

that is determined, primarily, by the time counter maximum measurable time 
interval and the laser energy losses during flight. In a CW scanner (also known as 
phase difference ranging), a continuous signal is emitted, and its travel time can 

be inferred considering the phase difference between the emitted and the received 
signal and the period of that signal. The range resolution in this case is directly 

proportional to the phase difference resolution. It also depends on the signal’s 
frequency; an increasing frequency reduces the minimum range interval that can 
be measured, so the resolution is higher. The maximum range (maximum 

measurable range (Wehr and Lohr, 1999)) is determined by the maximum 
measurable phase difference, equal to 360º (2π radians). 

To express the position of the points obtained during a scan in a local coordinate 
system, laser scanners use opto-mechanical assemblies with two rotating mirrors 
that head the laser beam, measuring their rotation speeds. Combining these two 

angular measurements with ranging data, it is possible to express the location of 
the point in a spherical coordinate system (Armesto-González et al., 2010). 

Another point-cloud acquisition method, slightly varying compared to the 
explained above, is that used by some Velodyne laser scanners models. These 
scanners use a column of laser diodes (from 16 to 128, depending on the model) 

that covers a Vertical Field of View of up to 40° pitch angle. This column rotates 
around the central axis of the scanner, determining the angle with a rotation 
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encoder and producing rings of point range measurements for each one of the 
diodes (Moosmann and Stiller, 2011). Both methodologies are employed by 3D 
scanners, but it is possible to obtain a 3D representation of a scene using a 2D 

scanner too. In such case, the 2D scans are combined with data of the path 
followed by the vehicle during the surveying process, monitored with a 

GPS/INS/odometer navigation system. This solution is presented in Abuhadrous et 
al. (2016) as a cheaper alternative to 3D systems, and it is demonstrated that it 
allows for the identification and segmentation of urban scene features (road, 

building fronts and trees). 

In addition to geometric measurements of a scene, laser scanner can provide 

further information. Intensity data of the backscattered light, for instance, 
provides information about the surface of scanned objects (Kashani et al., 2015). 
It is calculated based to the amplitude of the returned signal and depends primarily 

on the surficial properties of the object that reflects the laser pulse. The main 
superficial properties affecting how the laser pulse is backscattered are reflectance 

and roughness. Armesto-González et al. (2010) a method for the detection of 
damage on the surface of historical buildings (e.g. superficial detachment and 

black crust development) based on intensity data provided by laser scanners is 
presented. 

Some laser scanner systems are able to record several echoes produced by the 

same emitted laser pulse when its path is interrupted by more than one target. 
According to Wagner et al., the number and timing of the recorded trigger-pulses 

are critically dependent on the employed detection algorithms (Wagner et al., 
2004). Thus, the optimal solution would be to record the full-waveform, as it is 
formed by the sum of all echoes produced by distinct targets within the travel path 

of the laser pulse (Wagner et al., 2006). 

Bathymetric laser systems are also a representative case of additional features 

provided by laser technology. The energy received by the sensors of these systems 
is divided in two parts: the energy reflected by the surface of the water and the 
energy that crossed it (Hickman and Hogg, 1969). Kashani et al. (2015) indicated 

that the power of the returned pulse decays exponentially with water depth. The 
relation between decrease of returned energy and water depth is described by an 

attenuation coefficient, which is diffuse as it is in turn related to an absorption 
coefficient and a backward scattering coefficient. 

3.2.1.2 Positioning and navigation systems 

The components or subsystems of the positioning and navigation system can be 
classified in two different groups. The first group is for systems with exteroceptive 

perception, meaning that they provide position and orientation with respect to a 
reference frame (Kais et al., 2005). GNSS (Global Navigation Satellite System) 
belongs to this group. The second one is for those systems having proprioceptive 

perception and providing time derivative information of the position and 
orientation of the mobile. In this case, an initial state of the system must be 

defined, and subsequent states are calculated upon it. This group includes INS 
(Inertial Navigation System) and DMI (Distance Measurement Unit). 

 GNSS is a technology for positioning and navigation that uses a constellation 

of satellites as a reference. In such systems, position is estimated based on 
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the distances between a receiver and the set of satellites, calculating them 
by estimating the propagation time that transmitted signals take from each 
satellite to the receiver (Closas, Fernández-Prades and Fernández-Rubio, 

2009). The most widespread GNSS technology is the GPS, operated by the 
US Air Force. It is capable of providing precise position and time, traceable to 

global time standards (Dana, 1997). The broadest UTC (Universal Time 
Coordinated) time dissemination is, in fact, provided by GNSS (Petit, Arias 
and Panfilo, 2015). GNSS are employed for geo-referencing of the data in 

both static and mobile laser scanner platforms. 

Receivers of a GNSS can be adapted to various operational modes, 

fundamentally DGPS (Differential GPS), RTK (Real-Time Kinematic) and PPK 
(Post-Processed Kinematic) (I. Puente, González-Jorge, Martínez-Sánchez, et 
al., 2013). DGPS and RTK are similar, but there are some differences between 

them. The first one is the type of receivers used: single-frequency for DGPS 
and dual-frequency for RPK. The minimum number of satellite signals needed 

by DGPS is 3, while RPK mode needs at least 4, and 5 during initialization. 
This process takes around one minute, operating in RTK, but it is immediate 

in DGPS. However, an advantage of RPK over DGPS is the achieved accuracy, 
of just a few centimetres, while DGPS is only capable of reaching sub-meter 
accuracy, although it needs at least 4 satellite signals in that case. Lastly, in 

PPK mode, position data are stored for later correction using a reference 
station. The advantages offered by this mode are higher accuracy (usually) 

and absence of data latency, signal obstruction or coverage problems.  

Some of the drawbacks of GNSS technology are outages, multipath 
propagation and dilution of precision. An outage occurs when the visual line 

between the satellites and the GNSS receiver is blocked (e.g. when vehicle 
enters a tunnel or, in general, when the receiver is placed in interiors). The 

signal is then interrupted and positioning is not possible. Because of this, 
systems relying on GNSS use additional navigation and positioning systems 
for assistance. Multipath is another main source of error for GNSS navigation 

systems (Closas, Fernández-Prades and Fernández-Rubio, 2009) caused by 
tall obstacles, like buildings and trees (Ma et al., 2018). Part of the emitted 

energy bounces against these obstacles before going back to the receiver, so 
the measured ToF corresponds to a distance longer than intended. Finally, 
the geometrical disposition of the emitter and the transmitters (e.g. position 

of the satellites of a GNSS constellation relative to the receiver to be 
positioned) also affect the position estimation uncertainty, an issue that is 

known as dilution of precision (Langley, 1999).  

 INS use internal accelerometers and gyroscopes to calculate the position and 
attitude (tilt and heading) of a mobile laser scanner platform by the dead 

reckoning technique. These sensors measure displacement vectors of the 
system in a recursive manner to determine its situation (Kao, 2010). The 

error from every calculation step is accumulated, so accuracy in the position 
estimation increasingly degrades. Accelerometers calculate the acceleration 
of the system in Cartesian axes, and then it is integrated into velocity and 

subsequently into position (Advanced Navigation, 2017). Both the 
measurement and integration processes introduce certain noise in the results 

and it increases exponentially over time, which is consistent with the previous 
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statement about dead reckoning operation. Gyroscopes measure the angular 
velocity of the system, so its attitude can be evaluated. If the system is 
moving in a horizontal plane (e.g. a vehicle on a road) the angular speeds 

are proportional to the system heading. There are various types of 
gyroscopes: mechanical, micro-electromechanical (MEMS) (Seshia, Howe and 

Montaguet, 2002) and optical, which in turn are either Ring Laser Gyroscopes 
(RLG) or Fiber Optic Gyroscopes (FOG), according to their operating principles 
(Kavanagh, 2007). 

 A DMI can be included as well to obtain additional information in the case of 
using a mobile platform, and to contrast and complete the one provided by 

GNSS and INS systems. This device calculates travelling distances as a 
function of wheel rotation (Kao, 2010). Similar to the INS case, it tends to 
drift, because its functioning is also based on dead reckoning. Additionally, 

the difference between distance measurements obtained from the left and 
right wheels is proportional to the relative heading of the mobile (if the 

difference is small) so a differential DMI is capable of estimating heading. 

Combination of GNSS long-term accuracy and INS (as well as DMI) short-term 

accuracy makes it possible to improve position and velocity estimations. To 
integrate the data gathered by these components and estimate position and 
attitude of the system, a Kalman filter is applied. This filter consists on a set of 

mathematical equations and provides an efficient computational (recursive) 
solution of least-square method to the discrete-data linear filtering problem 

(Welch, Bishop and Hill, 1995). It was introduced in 1960 by R.E. Kalman and 
supports estimations of past, present and even future states. 

3.2.2 Performance of laser scanning systems 

There are various factors regarding the quality of the point-cloud data acquired by 
a laser scanner. In Yoo et al. (2010), a methodology for establishing comparative 

analysis was developed, being valid for both static and mobile systems. The factors 
evaluated according to this methodology are accuracy (and precision), resolution 
and completeness of the data. 

 Accuracy decreases with the scanning distance, as the footprint area of the 
laser beam (i.e. the area illuminated by the beam) increases with the range 

(Wagner et al., 2006). Regarding differences between ranging measurement 
principles, and according to (Wehr and Lohr, 1999), pulse ranging accuracy 
is influenced by pulse length or rise time. Phase difference ranging depends 

on laser signal wavelength. Furthermore, ranging accuracy is inversely 
proportional to signal-to-noise ratio, a function of the power of the received 

signal, input bandwidth, the signal receiver sensitivity and other parameters. 
Also, when Pulse Repetition Frequency (PRF) increases, the laser pulse 
energy decreases and the resulting beam is wider, so standard deviation 

grows (Chasmer et al., 2006). 

 Resolution of a system is related to the density and homogeneity of the point 

cloud. Point density is defined as the number of neighbour points whose 
distance is inferior to a reference distance from each reference point (Yoo et 
al., 2010), calculating the mean density as the mean of all point densities. 

Point density decreases with distance, when the angle between an emitted 
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laser beam and the next one (i.e. angular resolution) is kept constant, 
depending on the angular speed of the rotating mirror (opto-mechanical 
system) or the number of diodes in a column (laser array system). 

Homogeneity of the point cloud indicates how homogeneous is the 
distribution of points in the cloud. Generally, ranging allows to reach higher 

ranges, while phase difference ranging offers higher resolution.  

 Completeness of the acquired data is affected by nonvisible zones, areas that 
are out of the scanner FoV. Nevertheless, information about the scanned 

scene may be missed too because of shadow zones. These are areas occluded 
due to any object in the line of sight of the scanner that would hinder 

capturing the point clouds of an object of interest (Kiziltas et al., 2008). 

Additional factors related to laser scanner performance are reflectivity, which can 
lead to measurement errors on objects with reflective surfaces; and scanner warm-

up, which is a necessary step before starting data collection or drifting out of 
calibration (Kiziltas et al., 2008). Correct positioning and geo-referencing of points 

of the cloud is influenced as well by the accuracy achieved by the navigation 
system, as well as the accuracy of the lever arms measurements. 

3.2.2.1 Comparison of monitoring technologies 

Laser scanning technology has certain characteristics that make it more suitable 
for some tasks than other MMS technology. For instance, in the case of defect 

detection or alignment tasks (Golparvar-Fard et al., 2011), more accurate 
measurements are possible with laser scanner compared to image-based 

solutions. It has also been proved to be suitable for 3D displacement measurement 
of particular points of a structure and to obtain its static deformed shape better 
than with Linear Variable Displacement Gauges (LVDTs), electric strain gauges and 

fibre optic sensors (Park et al., 2007). Moreover, it has the advantage that no 
direct contact is needed. 

The mentioned MMS technologies have however certain advantages over laser 
scanner. Image-based 3D reconstruction equipment has a lower cost, higher 
portability and allows a fast data acquisition process. Image-based 3D 

reconstruction is based on triangulation, by which “a target point in space is 
reconstructed from two mathematically converging lines from two-dimensional 

(2D) locations of the target point in different images” (Dai et al., 2012). Thus, it 
is necessary to take images from different perspectives of the object. This could 
be considered a drawback when comparing with laser scanning, as the later obtains 

directly a 3D point cloud with one single setup (Ingensand, 2006), but there are 
already existing systems like the Biris camera that are capable of simultaneously 

obtaining two images on the same CCD camera (Beraldin et al., 2000). Another 
advantage of images is the “visual value in understanding large amounts of 
information” (Golparvar-Fard, Peña-Mora and Savarese, 2009). In the cited study, 

daily progress images of a construction site are used to produce a 3D geometric 
representation of the site over time (“4D model”). 

Nevertheless, and in addition to the aforementioned higher accuracy reached by 
laser scanners, these systems are not dependent on the illumination, as it is the 
case for cameras. However, imaged-based and laser scanning technologies can be 

combined to obtain a richly detailed representation of a scene by fusion of the 
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acquired datasets. For example, in (Zhu et al., 2011) MLS point clouds were used 
for geometric reconstruction of buildings and classification of the scanned points, 
while images of the buildings served for photorealistic texture mapping. 

3.2.3 Types of laser scanner systems 

There are, basically, three types of laser scanner system arrangements, namely 

TLS (Terrestrial Laser Scanner), ALS (Aerial Laser Scanner) and MLS (Mobile Laser 
Scanner). This classification is based on the platform type that is employed to 
install the system. In this section, each type of laser scanner is detailed. 

TLS are stationary systems, typically consisting on a LiDAR device mounted on a 
tripod or other type of stand, capable of obtaining high-resolution scans of complex 

environments, but with data acquisition times in the order of minutes for a single 
scan (Olsen et al., 2010). In the case of ALS, the laser scanner is installed on an 
aircraft (typically an airplane) combining the periodical oscillation of the laser 

emitting direction with the forward movement of the aircraft to obtain a dense 
point-cloud. Due to the small scanning footprint achieved by the laser, spatial 

resolution is higher than that provided by a radar (Kobler et al., 2007). ALS is 
employed, for instance, to obtain virtual city models or Digital Terrain Models 

(DTM). Finally, an MLS is defined as a “vehicle-mounted mobile mapping system 
that is integrated with multiple on-board sensors, including light detection and 
ranging (LiDAR) sensors” (Ma et al., 2018). MLS allows for safer inspection 

routines, as operators can execute their job from the interior of the vehicle, instead 
of manually moving and placing the equipment as in the TLS case. This is 

translated in a faster and safer data acquisition process. At the same time, MLS 
still allows for production of dense point clouds. However, data processing methods 
used in stationary terrestrial or airborne laser scanning cannot be directly applied 

in some cases to MLS, due to differences in how the data is acquired, mainly the 
geometry of the scanning and point density (Jaakkola et al., 2008). Another benefit 

of MLS is the capability to capture discrete objects from various angles, or to be 
merged with images of the same scene to add more information to the data (I. 
Puente, González-Jorge, Martínez-Sánchez, et al., 2013). The combination of laser 

scanner and image-based data is commented later in this document.  

A Mobile Laser Scanner system can be adapted to various configurations, 

depending on the specific requirements of a certain survey process or where the 
scanning is going to take place. In (Kukko et al., 2012), the most usual 
configurations for MLS (in this particular case, for a ROAMER single-scanner Mobile 

Mapping System using a FARO Photon 120 scanner) are detailed. The most broadly 
used is the vehicle configuration. This offers a fast surveying method, being 

possible to scan urban areas at normal traffic speed. To obtain road surface points, 
the scanner is adapted to a tilted position, which also produces scans that provide 
more information about the objects along the track direction than vertical scanning 

(Kukko et al., 2012) as narrow structures along the survey path are hit multiple 
times by sequential scans, and vertical and horizontal edges are captured with 

equal angular resolution. Automated procedures for structure recognition can be 
applied on MLS point clouds, such as the introduced in (Pu et al., 2011) for ground 
and scene objects segmentation. 
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Another option is to install the equipment on top of a trolley for applications that 
are not suitable for a vehicle. In the ROAMER case (Kukko et al., 2012) , this 
configuration was adopted to obtain a pedestrian point of view and point cloud 

data detailed enough to be used for personal navigation applications. When a 
certain scenario restricts the use of other solutions due to irregular terrain, difficult 

access, etc., a valid alternative is to use a backpack configuration, like the Akhka 
solution introduced in (Kukko et al., 2012). This solution was proved as a low-cost, 
compact and versatile alternative for Mobile Mapping Systems by (Ellum and El-

sheimy, 2000), although in this case the employed mapping sensor was a 
megapixel digital camera instead of a laser scanner. Kukko et al. also presented a 

MLS installed on a boat to obtain river topographical data. 

3.2.3.1 Comparison of commercial laser scanners  

There are numerous laser scanners currently available in the market, offering 

different characteristics in terms of performance and possible applications. 
Regarding MLS, the most notable features to establish a comparison between 

models are the maximum acquisition range, accuracy and data acquisition rate. 
The specifications of representative models used for MLS platforms from the main 

laser scanner manufacturers are detailed in Table 5. In Figure 12, those models 
are displayed. 

 

Table 5: Comparison of different commercial laser scanners 

Manufacturer RIEGL 
Teledyne 

Optech 
FARO SICK Velodyne 

LiDAR Model VUX-1HA 
Lynx 

HS300 
Focus 350 LMS511 Alpha Puck 

Measurement 

principle 
ToF ToF 

Phase 

difference 
ToF ToF 

Minimum range 1.2 m  0.6 m   

Maximum 

range 

420 m 

@ 300 kHz 
250 m 350 m 80 m 300 m 

Range accuracy 5 mm  
0.30 mm 

@ 25 m 
 Up to 3 cm 

Range precision 3 mm 5 mm    

PRF (Pulse 

Repetition 

Frequency) 

300 –1000 

kHz 

75 – 800 

kHz 

122 – 976 

kHz 
 2400 kHz 

Scan frequency 
10 – 250 

Hz 
300 Hz 97 Hz (V) 

25 – 100 

Hz 
 

Laser 

wavelength 

Near 

infrared 
 1550 nm 905 nm 903 nm 

Field of View 360º 360º 
300º (V) 

360º (H) 
190º 

40º (V) 

360º (H) 

Angular 

resolution 
0.001º  0.01º 0.167º 

0.11º (V) 

0.1 - 0.4º (H) 
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Figure 12: Commercial laser scanners: (a) RIEGL VUX-1HA; (b) Optech Lynx HS300; (c) FARO 

Focus 350; (d) SICK LMS511; (e) Velodyne Alpha Puck 
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4. SAFEWAY Pilots and end-user needs for Remote 
Monitoring 

This section describes the different Pilot areas where data is going to be acquired 
for the upcoming activities of WP3: Pilot 1 (Portugal, Infrastructures of Portugal – 
IP -), Pilot 2 (Spain, Ferrovial) and Pilot 3 (United Kingdom, Network Rail – NR-). 

The most relevant information needed for the definition of scenarios is shown for 
each Pilot (most relevant adverse events and assets as well as the main strategic 

lines for evaluating the scenarios). Definitions for the groups of critical assets that 
are considered in this section can be seen in Table 6. Other key concepts (Pilot, 
demonstration site, scenario, adverse event) can be found in the Glossary.  

 

Table 6: General groups of critical assets 

Asset Short definition 

Bridge 

Infrastructure built over a water course so that road or 

rail traffic can cross from one side of it to the other. 

This comprises all types of bridges available in the 

transport network of study (e.g.: Overline, underline, 

masonry arch, girder, etc.). 

Culvert Draining element under a roadway, railway or similar. 

Embankment 
Wall of soil used to raise a terrain level facilitating the 

pass of a road or to contain a flooding area. 

Pavement Asphalted path for road traffic. 

Retaining wall Rigid walls used for the soil’s lateral support. 

Track Group of two parallel rails passed by the train. 

Tunnel Underground passageway built for road or rail traffic. 

Viaduct 
Infrastructure built over a valley so that road or rail 

traffic can cross from one side of it to the other. 

 

For each Pilot, the information shared by end-users in terms of inspection 

procedures and remote monitoring needs is organized in a number of tables that 
summarize the capabilities of the technologies defined in Section 2 and Section 3. 

A summary of that information is shown in  Table 11. It is based on the inspection 
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needs of Network Rail, although it can be extrapolated to all the Pilots of the 
project.  

In Table 11 (see Appendix), for every asset considered (left column), the 

technologies with a potential usefulness are remarked (middle column), and a 
general description of the information that can be measured is presented (right 

column). The available technologies are presented using the following acronyms: 

 RS (Radar Satellites) 

 OS (Optical Satellites) 

 LS (Laser Scanning, including Terrestrial Laser Scanning, Mobile Laser 
Scanning, and Aerial Laser Scanning) 

 TLS (Terrestrial Laser Scanning) 

 MLS (Mobile Laser Scanning) 

 ALS (Aerial Laser Scanning) 

 PHTGRM (Photogrammetry) 

 THRMGR (Thermography) 

Other relevant remarks for the understanding of ¡Error! No se encuentra el 
origen de la referencia.: 

 Whenever the usage of a certain technology is unlikely to lead to fully 
automated processes regarding the extraction of information, a ‘~Semi’ 
note is added to the technology acronym. 

 Whenever the extraction of information is unlikely or uncertain when using 
the proposed technologies, it is also remarked (as ‘Uncertain’). 

 

Table 13-Table 21 in the Appendix (which have been elaborated for each Pilot and 
will be mentioned throughout this section) specify, for each technology, to which 

extent it is possible to detect or extract information from different assets, using 
the legend in Table 12 (see Appendix). 

4.1 Pilot 1: Portugal 

The first Pilot will take place in Portugal in two demonstration sites: one in the 
region of Santarém (Demonstration Site 1.A, Figure 13) and another in Leiría 

(Demonstration Site 1.B, Figure 14). They include both railway and road sections 
of the Atlantic corridor.  
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Figure 13: Demonstration Site 1.A: Santarém (Source: Data provided by Infraestruturas de 
Portugal on Google Earth) 

 

Figure 14: Demonstration Site 1.B: Leiría (Source: Source: Data provided by Infraestruturas de 
Portugal on Google Earth) 

 

4.1.1 Adverse events 

Various types of adverse events will be considered for the definition of scenarios 

in the Portuguese pilot. The natural hazards taken into account depend on the 
selected demonstration site; floods in the case of Santarém and both floods and 

wildfires in Leiría. The human-made hazards are related to the condition of the 
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infrastructures, but accidents and intentional events (e.g. provoked fires in Leiría) 
are considered as well. 

The events to investigate in the Santarém demonstration site are: 

 Natural hazards (NH): Floods are considered a major risk because roads and 
railway included in this site are placed along the basin of the Tagus River.  

 Human-made hazards (HMH): Events related with structural condition and 
accidents affecting the infrastructures. 

In the Leiría demonstration site, there will be considered: 

 Natural hazards (NH): The area is affected by wildfires, events that are 
closely related with heatwaves occurrence. The number, duration and 

amplitude of heatwaves is expected to increase in the future according to 
climate change projections. Flooding is also an event to be considered in 
this demonstration site.  

 Human-made hazards (HMH): Fires can also be provoked by humans. Other 
human related risks are those regarding the structural condition of the 

assets and accidents. 

4.1.2 Evaluation of scenarios 

The focus of this pilot is to enhance emergency responses, inter-modality and 
behavioural and psychological issues of users (as a short-term decision-making) 
since it will be checked the ability of IMS to deliver information to the users through 

information panels and setting gateways in certain real or simulated events. 

 Emergency response 

 Inter-modality 
 Behavioural and psychological aspects of users 

o Short-term decision making 

 Information methods 
 Setting gateways 

4.1.3 Assets 

The Demonstration Site 1.A (Santarém) includes both road and railway 
transportation modes, so it can be validated in a multimodal context. Regarding 

the road section, the available information includes 49 pavement sections that 
cover a total of 311 km (both directions considered separately in highway sections) 

as shown in Figure 15. Similarly, the railway area is subdivided in 31 sections from 
four different railway lines, covering a total of approximately 92 Km.  

Apart from the pavement and rail sections, there is information available regarding 

bridges and viaducts. There are data from more than 150 assets in road sections, 
and a similar number for the rail sections  

For the Demonstration Site 1.B (Leiría), the available information is divided in road 
and railway assets (similarly than for Demonstration Site 1.A, bridges and 
viaducts), with approximately 40 assets for each transportation mode (Figure 14).  
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Figure 15: Demonstration Site 1.A – Santarém: (a) Road sections (b) Railway sections. In both 

cases, each section has a randomly selected colour. (Source: Data provided by Infraestruturas de 
Portugal on Google Earth) 

 

As bridges are the most relevant assets for this Pilot, the capabilities of the 

proposed data acquisition technologies for extracting information from bridges are 
summarized in Table 13 (see Appendix). These tables consider exclusively the data 
provided for inventory and inspection of road networks. For railway network 

assets, the information is summarized in Table 15-Table 21, which summarize data 
from Network Rail (Section 4.3) that can be extrapolated for all Pilots. 

4.2 Pilot 2: Spain 

This Pilot will take place in Spain, along the Mediterranean Corridor, and considers 
two demonstration sites: Demonstration site 2.A, in Málaga, includes a section of 

high-speed railway (154km of length) including four stations (Figure 16). The 
Demonstration Site 2.B in Murcia (Figure 17) includes conventional railway, 

comprising older infrastructure whose conservation may be worse than the high-
speed infrastructure of Demonstration Site 2.A.  
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Figure 16: Demonstration Site 2.A: Málaga. (Source: Data drawn in Google Earth, not directly 
provided by Ferrovial) 

 

Figure 17 : Demonstration Site 2.B: Murcia. The railway section has been manually drawn 

(Source: Data drawn in Google Earth, not directly provided by Ferrovial) 

4.2.1 Adverse Events  

For this pilot, there are both natural and human-made hazards that have to be 

considered:  

 Natural events: 
o Earthquakes 

o Flooding 
o Storms / Heavy Rain 

o Hot / Cold waves 
o Landslides 

 Human-made events 

o Car accidents 
o Other accidents / vandalism 
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o Provoked fires 

4.2.2 Evaluation of scenarios 

Based on installed weather stations (measures of rain, temperature, humidity and 

noise) accelerometers that feed the National Geologic Institute database and 
already deployed IoT (Internet of Things) sensors, it will be possible to assess risks 

related to natural hazards such as floods, storms, landslide, earthquake, hot/cold 
waves; and risks from man-made induced hazards such as terrorist attacks, fires 
and train crashes. 

Adaptive structures should be evaluated to reduce the impact of certain risks in 
the long-term (elastomeric solution in seismic areas, low degradation materials, 

etc.). It will be necessary to adapt existing infrastructures.  

New self-healing materials could be evaluated after the introduction of new 
constructions and retrofitting solutions. 

4.2.3 Assets 

The assets for Pilot 2 are summarized in the following list: 

 Tunnels 
 Underpasses and overpasses 

 Viaducts 
 Slope of Embankments 
 Culverts 

 Protection elements 
 Fencing 

 Surrounding vegetation 
 Rail track 

o Fish plate joint 

o Railway sleeper 
o Ballast 

o Railroad switch 
o Expansion joints 

According to the information provided by Ferrovial, Table 14 (see Appendix) 

summarizes the critical assets for the Spanish pilot. It also summarizes the 
technologies available and considered relevant for the inspection of each asset. 

It is important to highlight that the requirements presented by Ferrovial concerning 
inspection, are not expected to be performed using monitoring technologies 
(neither satellite nor terrestrial) within SAFEWAY’s WP9. 

4.3 Pilot 3: United Kingdom 

The only demonstration site for this Pilot (Demonstration Site 3.A) is placed in 

Stoke-On-Trent, covering a 10-mile section of the London-Manchester railway line, 
which is the most frequented train line in the United Kingdom (Figure 18). This 
line is part of the London North Western rout, the biggest in the country, running 

the railways in the North West and West Midlands and, thus, a critical component 
of the North Sea-Mediterranean corridor of the TEN-T network. 
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Figure 18: Demonstration Site 3.A: Stoke-on-Trent (Source: Data drawn in Google Earth, not 
directly provided by Network Rail) 

 

4.3.1 Adverse events 

The events considered in the scenarios evaluated in this demonstration site are 
the following: 

 Natural hazards (NH): Sudden weather events are frequent in the area, 
especially heavy rain causing floods. 

 Human-made hazards (HMH): Structural failures are expected because of 

the advanced age of the assets, some of them between 100 and 150 years. 
Human provoked events like bridge strikes are also considered. Also, human 

activities like mining (a cause of subsidence) involving geotechnical 
movements may be related to structural failures. 

4.3.2 Evaluation of scenarios 

The aim of the scenario evaluation is to gain insight into the current situation of 
the network, regarding infrastructure assets and the environment, to develop 

solutions that can be used to anticipate extreme events occurrence, reduce the 
cost of inspections and improve safety, both for network users and operators. 

4.3.3 List of assets 

A total of 158 individual assets belonging to 8 types of structures are described 
along the 10-mile line section as shown in Table 7¡Error! No se encuentra el 

origen de la referencia..  
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Table 7: Assets of Demonstration Site 3.A: Stoke-on-Trent 

Asset type Number of assets 

Tunnel 1 

Underbridges 15 

Overbridges 20 

Footbridges 5 

Retaining walls 34 

Culverts 52 

Pipe bridges 26 

Side of line bridges 5 

 

Table 15-Table 21 (see Appendix) have been completed using data from Network 

Rail as reference. The aspects reflected in those tables are used to assess the state 
of the infrastructure at component level. In addition, they provide information 

about the capability of the available technologies to perform the damage 
assessment and the subsequent definition of Performance Indicators (Section 6). 
Each of these tables reflect the characteristics to be studied depending on the type 

of structure and/or element considered. 
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5. SAFEWAY Remote Monitoring data acquisition 
protocols 

This section describes the data acquisition protocols for the different technologies 
that have been introduced in Section 3. First, the protocols and relevant acquisition 
information for satellite technologies are defined, and then a similar approach is 

followed for terrestrial technologies.  

5.1 Satellite technologies: Data acquisition protocols 

The satellite monitoring activity in the SAFEWAY project will be mainly based on 
the Copernicus Sentinel data. The data acquisition will be performed through the 
Copernicus Open Access Hub that provides complete, free and open access to 

Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P images, starting from the In-
Orbit Commissioning Review (IOCR). 

5.1.1 This section contains the description of Sentinel-1 (radar) and 
Sentinel-2 (optical) data. Sentinel-1 data 

A new and interesting opportunity for the continuous monitoring of roads and 

railways infrastructures stability is provided by the Sentinel-1 satellite 
constellation, the last imaging radar mission of the European Space Agency (ESA) 

within the framework of Copernicus European programme for Earth Observation.  
Considering the cost/benefit of the obtainable information by processing these 
data with the Multi-Temporal Interferometry algorithms, Sentinel-1 satellite can 

be considered the optimal SAR satellite sensor to monitor the ground and 
infrastructures like roads and railways on wide areas. 

Sentinel-1 by offering regular global-scale coverage, free imagery, improved 
revisit time (up to 6 days) and long wavelengths (5.6 mm) can now guarantee 
wider and more efficient application of MTI for the global infrastructure monitoring. 

The two-satellites Sentinel-1A and 1B provides high reliability data with a short 
revisit time, global coverage and rapid data dissemination to support operational 

applications in the priority areas of marine and land monitoring and emergency 
services. To accomplish the above, the satellites carry the Synthetic Aperture 
Radar (SAR) instrument that offers medium-to high-resolution radar imagery at 

C-band. Sentinel-1A has been acquiring data since 2014, whilst Sentinel-1B has 
been acquiring data since 2016.  

The use of Sentinel-1 with respect to the other C-Band constellations, have  the 
following advantages:  

- It is possible to detect signals from targets with short de-correlation 

 time such  as Distributed Scatterers. Indeed, using the Sentinel-1 
 images it is possible to  monitor the ground displacements also on 

 soil characterized by a mean de correlation time of about 10 days 
 (like pasture) improving the number of measurable targets.  

- Higher maximum measurable velocity that responds to the specific 
 requirements of ground and infrastructures monitoring. 
- The lowest velocity standard deviation. 
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Sentinel-1 is acquired in 4 modes (Figure 19):  

 

Figure 19: Sentinel-1 acquisition modes 

The acquisition schema is represented in Figure 20:  

 

Figure 20: Sentinel-1 acquisition schema 
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Each mode can potentially produce products at:  

• Raw Level-0 data (for specific usage) (typical size 1GB/product)  

• Level-1 Single Look Complex data comprising complex imagery with 

amplitude and phase (systematic distribution limited to specific relevant 
areas) (typical size 8GB/product) 

• Level-1 Ground Range Detected data with multilook intensity only 
(systematically distributed) (typical size 1GB/product)  

 Level-2 Ocean data for retrieved geophysical parameters of the ocean 

(systematically distributed). 

Within the SAFEWAY project the Sentinel-1 IW – Level 1 Single Look Complex data 

will be processed by means of MTI algorithm in order to continuous monitor the 
roads and railways infrastructures stability. 

5.1.2 Sentinel-2 data 

Sentinel-2 carries an innovative wide swath high-resolution multispectral imager 
with 13 spectral bands, (443 nm–2190 nm) with a swath width of 290 km and 

spatial resolutions of 10 m (4 visible and near-infrared bands), 20 m (6 red-
edge/shortwave-infrared bands) and 60 m (3 atmospheric correction bands) for a 

new perspective of our land and vegetation. 

The combination of high resolution, novel spectral capabilities, a swath width of 
290 km and frequent revisit times provides unprecedented views of Earth. 

The mission is based on a constellation of two identical satellites in the same orbit, 
180° apart for optimal coverage and data delivery. Together they cover all Earth’s 

land surfaces, large islands, inland and coastal waters every five days at the 
equator. 

Sentinel-2A was launched on 23 June 2015 and Sentinel-2B followed on 7 March 

2017.  

Sentinel-2’s multispectral imager undertakes systematic acquisition in a single 

observation mode. 

The following 3 levels are available for Sentinel-2 images: 

 Level-1B: Top of atmosphere radiances in sensor geometry. Level-1B is 

composed of granules, one granule represents the sub-image one of the 12 
detectors in the across track direction (25 km), and contains a given number 

of lines along track (approximately 23 km). Each Level-1B granule has a 
data volume of approximately 27 MB.  Level-1B products require expert 
knowledge of orthorectification techniques. 

 Level-1C: Top of atmosphere reflectances in fixed cartographic geometry 
(combined UTM projection and WGS84 ellipsoid). Level-1C images are a set 

of tiles of 100 sq km, each of which is approximately 500 MB. These products 
contain applied radiometric and geometric corrections (including 
orthorectification and spatial registration). 

 Level-2A: Bottom of atmosphere reflectances in cartographic geometry. This 
product is currently processed by on the user side by using a processor 

running on ESA’s Sentinel-2 Toolbox. The possibility of making a standard 
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core product systematically available from the Sentinels core ground 
segment is currently being assessed as part of the CSC evolution activities. 

Within the SAFEWAY project the Sentinel-2 Level-2A will be used.  

5.2 Terrestrial technologies: Data acquisition protocols 

This section exposes the necessary equipment to perform the survey in the railway 

environment with a Mobile Mapping System (MMS). Moreover, the main installation 
and survey needs are described. 

 

5.2.1 Equipment 

The Mobile Mapping System (MMS) used in this project to generate survey-grade 
LiDAR data is a Lynx mobile mapper (Lynx M1). It was manufactured by Optech 

and released in 2007 (Teledyne Optech, 2019). According to the application, the 
LiDAR system can be combined with any number of sensors in order to obtain 
extended results. Usually, the monitoring of the position of the scanning system is 

possible thanks to the use of a Global Navigation Satellite System (GNSS), 
together with an Inertial Measurement Unit (IMU), and Distance Measurement 

Indicators (DMI). The positioning system was designed by APPLANIX (POS LV 520) 
and the GNSS receivers belong to TRIMBLE. As a result, the LiDAR system provides 

information about the relative position of objects with respect to the MMS in a local 
coordinate system, while positioning devices give the absolute location of the 
vehicle with respect to a global coordinate system (e.g. WGS84). 

The platform used for supporting the sensors on top of the vehicle has been 
developed by Optech in collaboration with the University of Vigo. The weight of the 

whole set is about 100 kg (~220 lb), and may be mounted on a van, a wagon or 
a draisine. Whichever the vehicle, it moves along a predefined trajectory while the 
laser scanner is continuously working. With this, the so called trajectory followed 

by the platform is registered into a global coordinate system. The result is an 
extremely dense 3D point cloud, created when the laser scanner is synchronized 

with the navigation system. 

5.2.1.1 LiDAR system and associated sensors 

The Mobile Laser Scanning (MLS) system uses the LiDAR technology to obtain a 

three dimensional (3D) representation of the environment. The collected data are 
points distributed in the 3D space forming what is called a ‘point cloud’. The laser 

scanner works directing a beam of laser light to any object in the space, and 
computing the distance between the LiDAR system and the target object. The 
distance is calculated through the time delay between the emission and return of 

the light beam. When the distance measurement device is combined with 
optomechanical systems or mirrors, which deflect the laser beam and measure the 

deflection angle, the mentioned point cloud is obtained. 

The LYNX scanner available obtains a maximum of 500,000 points per second, 
with a frequency up to 200 Hz. The maximum working range is about 200 m in a 

Note: Part of the information of this document comes from the datasheets of 
the products involved. 
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full circle with 360º of angular coverage, being 1 m the minimum range of 
operation between the LiDAR sensor and the object. The different characteristics 
of the returned laser signal are recorded, as well as the intensity reflected by the 

objects. A short description of the equipment’s specifications can be found in Figure 
21. 

 

Figure 21: Lynx system specifications 

Optech gives some general recommendations when using the Lynx system: The 

selected vehicle carrying the sensors must not be too big, since it could find 
difficulties when performing the survey in certain areas. Although it has to be 
strong enough in order to support the weight of the necessary equipment, and also 

provide enough power to the Lynx. 

In the railway environment, it is recommended to use a draisine in order to avoid 

dimensional problems. 

 Global Navigation Satellite System (GNSS) and Inertial 
Measurement Unit (IMU) 

The navigation system allows the georeferencing in geographical coordinates of 
the whole survey. The GNSS receiver is used to evaluate the location of the MMS, 

while the IMU acts as its origin of coordinates. Lynx uses GPS data collected by 
the receptor in real time, and GPS data collected independently by a base receptor 
in order to create a differential GPS solution post-processed. 

However, the vehicle’s location may vary a few metres when interferences with 
satellites appear (e.g. multiple signals, tunnels, dense vegetation…). The IMU is 

then used as a complement to the GNSS since it does not depend on external 
sources of information. It gives real time position, orientation and velocity 
measurements of the moving platform by integrating the accelerometer and 

gyroscope readings over time, and every sensor must be calibrated to its respect. 
In order to maintain the quality of the measurements, the IMU needs to be 

recalibrated periodically. 
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The GNSS used in this project is the APPLANIX POS LV 520, which integrates an 
IMU with two Trimble R4 GPS antennas. They provide the absolute accuracies 
(RMS) presented in Table 8 (Puente et al., 2012; Iván Puente et al., 2013). 

 

Table 8: Absolute Accuracies (RMS) 

 Heading Roll Pitch X Y Z 

RMS 0.015º 0.005º 0.005º 0.02 m 0.02 m 0.05 m 

 

The vehicle where these devices will be installed has to be long enough to place 

the two GPS antennas. The distance between them must be of at least 1.5 m, 
preferably between 2 and 5 m, being 2 m the standardised distance. This 
separation will condition the precision of the direction measurements obtained 

through the IMU. 

 Distance Measurement Indicator (DMI) 

The DMI is an encoder used to measure linear distances. The APPLANIX system 
employed in this project provides accurate vehicle velocity updates. It is formed 
by the DMI itself, a control-stick and a cable. This device needs to be mounted on 

one of the back wheels of the vehicle (Conforti and Zampa, 2012; I. Puente, 
González-Jorge, Riveiro, et al., 2013). 

The data provided by this unit is useful for reducing the error induced by the GNSS 
and IMU measurements. After the survey, these data and the LiDAR ones are 
processed together with the ones from the navigation systems in order to reference 

the laser positioning points to the ellipsoid WGS84. The DMI and IMU also allow 
the navigation when the GPS connexion is lost (Puente et al., 2012; Meng, Wang 

and Liu, 2017). 

5.2.1.2 Spherical camera (Ladybug5) 

This project will use the Spherical Camera Ladybug5, which has fully integrated 

multiple cameras to obtain 360º panoramic images. It is composed by a set of six 
Sony® ICX655 CCD sensors arranged in a circular five-camera configuration plus 

a single vertical camera. 

The camera has to be placed in a pole in the front-top part of the vehicle, so that 
no equipment from the MMS is captured. Moreover, in order to improve the results 

in closed environments (tunnels), a new structure has been developed. The 
camera was provided with four artificial light bulbs at its basis, obtaining with this 

useful RGB images during the laser survey. 

5.2.1.3 Control Rack 

There are four different racks in the system: acquisition, control, LiDAR and power 

supply. All four need to be installed inside the moving vehicle, and are connected 
and managed by an expert operator using only the control rack. In addition, to 

remotely operate the equipment from the control position, a line of communication 
between the vehicle itself and the equipment is needed. The ideal would be an 



 
 

 

D3.1 – Data Acquisition Report 60 

 

Ethernet network connexion or even a screen directly connected to the control 
rack. 

The acquisition and synchronization of data from the different sensors in the MMS 

is made using the control rack. It has a server that allows the download of data in 
a rapid and reliable manner. The acquisition system is in charge of synchronizing 

and shooting the cameras when needed, but it is run using the control rack. As 
said before, the LiDAR system also has its own rack, which controls the LiDAR 
heads, IMU, GNSS antennas and DMI. 

The power rack provides electric supply to all these systems, as well as the 
spherical camera’s lighting system. A connection of 220V of alternating current is 

necessary in order to give the electric power needed. If the moving vehicle used 
had no power generator that may be used, an electric generator will be installed. 
Two Uninterruptible Power Supply (UPS) systems will also be installed to ensure 

the continuous electrical supply in the storage and control rack, and the LiDAR and 
DMI system. These should also be placed inside the vehicle. 

 

 

5.2.2 Hardware installation 

5.2.2.1 Installation procedure 

 LYNX Mount Structure Platform 

It can be placed on the roof of the vehicle. 

The base plates and vertical stands for mounting the laser scanners are 
attached to the platform with nuts and bolts. 

Axial fans can be installed on the base plate under laser scanners to refrigerate 
them when operating under hot weather conditions. 

 LiDAR sensors 

The sensors are placed in the vertical stands inserting the pins on their sides inside 
the slots of the stands, and must aim outside from the rear of the vehicle. 

Adjusting the nuts of the stand mechanism, the sensors are fixed to their 
scanning position.  

The area around the LiDAR sensors must be free of obstructions that could 

interrupt the laser beam trajectory. 

Silent-blocks can be used to reduce the effect of vehicle vibrations on the sensors. 

The necessary wiring consists on power and communication cables connected to 
the control rack inside the vehicle. 

The maximum length of the cables connecting the sensors and the control rack is 

5 metres. Hence, the separation between them must be inferior to this distance. 

 GNSS and IMU 

Note: Modifications to the moving platform, if required, would always be 

consulted, approved and authorised beforehand. 
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An A-shaped stand is employed to install the primary GNSS antenna on top of the 
array box. 

o The primary antenna must be placed directly over the IMU of the array 

box. 

o GNSS primary antenna-IMU lever arm must be measured with centimetre 

precision. 

The secondary GNSS antenna is placed directly on the roof of the vehicle. 

o Longer distances between primary-secondary antennas improve precision 

of azimuth and vehicle heading determination (1,5 m minimum / 5 m 
maximum; 2.0 m recommended by Optech). 

The roof of the vehicle must be free of obstructions that could interrupt the line of 
sight between the GNSS satellites and the receivers. 

GNSS antennas connections must be protected against moisture and dust with 

tape. 

The necessary wiring consists on RF cables connected to the control rack inside 

the vehicle. 

IMU 

The array box must be attached and aligned to the structure platform using the 
available slots. 

 DMI 

It must be placed close to the optic encoder. 

The device must be installed in a wheel that does not turn (i.e. it cannot be installed 

on the directional axis of the vehicle), as that could produce incorrect 
measurements or damage the device. 

The DMI is attached to the vehicle using either a temporary or permanent 

mount (clamp). 

o Permanent: Inserting metal bolts in holes drilled on the fender of the 

vehicle. 

o Temporary: Using either suction pads or a magnetic band fixed with nylon 
bolts to attach the clamp to the fender of the vehicle. 

The encoder is attached to the wheel of the vehicle using an adapter for the wheel 
hub. This adapter has different slots to place rings that are connected to the wheel 

hub bolts. The slots to be used depend on the number of bolts of the hub. 

o The hub adapter must be correctly centred to avoid data signal noise and 
excessive vibrations. 

Once the hub adapter is installed, the temporary/permanent clamp is slid over the 
control rod. 

o The control rod must be placed perpendicular with respect to the road. 



 
 

 

D3.1 – Data Acquisition Report 62 

 

The power/data cable is connected to the DMI encoder and covered with tape 
to protect it against dust and moisture. The cable is guided along the control rod 
and fixed with tie-wraps. Then, it is connected to the control unit. 

 Thermographic Camera (if required) 

The thermographic camera should be installed on a platform that allows to modify 

its orientation, so it could be adapted to different inspection situations. 

The necessary wiring consists on a power cable, an Ethernet cable and one for the 
TTL signal. It is introduced inside the vehicle through its superior side. 

 Spherical Camera (Ladybug5) 

An illumination system could be necessary to make possible to operate the camera 

under low-light conditions (e.g. inside a tunnel). 

The necessary wiring consists on a power cable, USB 3.0 cable and one for the TTL 
signal. 

 Control rack 

Each sensor is connected to one of the racks: 

o Acquisition rack 

- 360º camera 

- Thermographic camera  

- LiDAR rack 

o LiDAR rack 

- LiDAR sensors 

- IMU 

- GNSS antennas 

- DMI 

o Control rack 

- Controls data gathering 

- Runs the acquisition and control software 

- Stores the information 

- It must be placed on a level surface. 

- There must be enough space behind the unit to correctly connect the 

wires and not obstruct its vents. 

- The power supply, the HDD bay and the power switch must be easily 

accessible. 

o Power rack 

- 220V AC for the illumination system 

- 220V AC for the control system 

- 12V DC for the LiDAR system 

5.2.2.2 Required parameters and sensors’ calibration 

Installation key parameters: 
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 LiDAR lever arm: Distance between the LiDAR sensor centre and the IMU 
centre. The orientation of the LiDAR (roll, pitch and azimuth) with respect 
to the IMU must be measured and defined as well. 

 DMI (Figure 22): 

o DMI lever arm: Distance between DMI centre and IMU centre.  

o Determination of the DMI point of reference origin in X, Y and Z axis: 

o Diameter of the wheel where the DMI is installed. 

o DMI scale factor. It is necessary for the correct conversion from DMI pulse 

per revolution measurements to meters. It is calculated using the next 
equation: 

𝑠 =  
𝑛

𝑑𝜋
 

n = pulses per wheel revolution 

d = Wheel diameter 

 

Figure 22: DMI Point of reference determination. (Source: Optech manual) 

 Primary antenna lever arm 2: Distance between the primary antenna 
centre and the IMU centre. Provided by Optech. 

 Distance between GNSS antennas: Used by the GAMS (GNSS Azimuth 

Measurement Sub-system) to calculate heading. To do so, the vector 
between the primary and secondary GNSS antennas phase centres must be 

precisely measured.  

 Ladybug5 Spherical Camera lever arm: Distance between camera and 
IMU respective centres. 

 Thermographic camera lever arm: distance between camera and IMU 
respective centres. The angular orientation of the camera with respect to 

the IMU must be defined as well, using a calibration support. 

Lever arms and initial aiming angles (roll, pitch, azimuth) must be introduced in 
the LV-POSView software after installation or position modification of the 

instruments. 

DMI Point of reference 
origin 
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Precise measurements of the parameters above minimize the error presumption 
during data processing. 

5.2.2.3 Survey plan 

LiDAR parameters can be edited in the “LiDAR configuration” menu of the software. 
For each LiDAR sensor, it is possible to set up minimum and maximum data 

acquisition ranges. All results out of these thresholds will be rejected. 

For these LiDAR sensors, the minimum valid range for data acquisition is 1 meter 
around the longitudinal axis of the LiDAR sensor (Figure 23). The maximum 

dimensions of the Lynx system (when the case is mounted) are: 

 

1474 mm (Length) – 827 mm (Width) – 575 mm (Height) 

 

 

Figure 23: Inspection vehicle with Optech Lynx attached. The minimum scanning ranges are 
represented by blue circular surfaces 

5.2.2.4 Security 

In this section, a list of preventive measures from the Optech manual necessary 

to take into account to operate correctly and safely the system are presented. 

 Laser safety 

o Lynx is a “Class 1 Laser Product” and complies with IEC 60825-1 rules, so 
radiation emitted through the windows of the sensor is completely sight-
safe (Figure 24). 
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Figure 24: Class 1 Laser compliance label (Source: Optech manual) 

o A “Class 3b Laser” is inside the sensor, so its case must be open only if 
the sensor is turned off to avoid exposure to the beam, as radiation levels 

are over sight-safe thresholds (Figure 25). 

 

Figure 25: Class 3B Laser case opening label (Source: Optech manual) 

Laser specifications can be seen in Table 9: 

 

Table 9: Laser specifications (Source: Optech manual) 

Parameter Specifications 

Wavelength 1550 nm 

Pulse repetition frequency 100 kHz 

Pulse width <5 ns 

Pulse energy <3µJ 

Average power <200 mW 

Peak pulse power 1 kW 

 LiDAR sensor 

o Manipulate the sensor carefully, as it is heavy-weighting. 

o Maintain protection covers when not operating. 

o Do not touch the window of the sensor. 

o Do not open the sensor case (except for replacing the dryers). 

o Do not place the sensor perpendicular to the floor when initialising it, 
because bearings of the motor could be damaged. 

o Check the correct operation of each LiDAR fan when using the system with 
temperatures > 10ºC (50ºF). 
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o Wait while the sensor warms up if there is condensation on its window due 
to changes in environmental temperature. 

 GNSS antenna 

o Do not attach metal labels to the antenna. 

o Maintain ceramic parts of the antenna clean and free from scratches. 

 DMI 

o Do not bend the control rod nor use it to hold the DMI. 

o Do not install the DMI on a directional wheel. 

o Avoid collisions of the DMI with road elements. 

o Verify the joints of the DMI hub adapter before its use. 

o Be careful when opening the doors of the vehicle (specially with sliding 
doors). 

 Cameras 

o Always remove the case of the camera in a clean and protected 
environment and maintain both cameras and lenses clean. 

5.2.3 Survey protocols 

In this section, general requirements for performing a MLS survey are described. 

Every survey requires planning before performance in order to achieve the better 
results possible considering the needs in each case. This planning involves: 
selection of suitable equipment; definition of the suitable trajectory; preparation 

and calibration of the equipment; definition of the working parameters. 

5.2.3.1 Weather conditions 

Laser scanners are an active remote sensing technology, so surveys can be 
performed at night. Nevertheless, most of the surveys are planned during the day 
due to navigation issues and to obtain useful RGB images. In any case, it is 

important to consider this as well as the benefits that could provide to the survey 
(less pedestrian and/or roadway traffic, less impact if interrupting the service of 

any infrastructure…). 

Since the majority of the LiDAR systems work with laser in the visible light range, 
dust and vapour can severely affect the results of the measurements. Moreover, 

some sensors are sensitive to direct sunlight as well as bad reflectivity surfaces. 
All these factors should be taken into account when picking a date for performing 

the survey, since the weather conditions need to be specific. 

It is also important to take into account the vegetation in the survey area. This 
could be both a good or a bad issue when performing a survey. In some cases, 

vegetation would provoke occlusions of important areas in the infrastructure, so it 
would be better to acquire the data in leaf-off conditions (Riveiro, Conde and Arias, 

2015; Filgueira et al., 2017). 
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5.2.3.2 Accuracy improvement 

After the installation of the equipment in the moving platform, it must be 
calibrated. In the railway environment, at least 200-300 m of outdoors’ rail track 

is necessary for calibrating the sensors. The vehicle will move operated by an 
expert and the calibration will be verified. 

To improve the trajectory’s accuracy, it is necessary to perform stops in a place 
with good GNSS coverage. These stops will last at least 10 minutes at the 
beginning and ending of each itinerary. 

It is important to highlight that accuracy depends not only on the equipment, but 
also on the geometry of the 3D scenario under study and the speed of the moving 

platform over the tracks. It must be constant and a maximum of 30-40 km/h. 
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6. Performance Indicators for remote monitoring 

This section serves as starting point for the search of Key Performance Indicators 
(KPIs). KPIs are number of performance measurements that will evaluate the 
success of the project activities.  

RAMSSHEEP approach was proposed for defining KPIs (Kick-off meeting, Parallel 
Session WP3-4-6): 

RAMSSHEEP: 

Reliability 

Availability 

Maintainability 

Safety 

Security 

Health 

Economy 

Environment 

Politics 

Measuring KPIs depends on several aspects. In specific scenarios, KPIs will 
depend on a specific set of aspects. These aspects are defined with a number of 
parameters or Performance Indicators (PIs). 

Performance Indicators of the infrastructures will be defined at different levels, 
depending on the monitoring techniques:  

- PIs at the component level (Pavement, curbs, sidewalks, drainage, 
lighting, signage...) 

- PIs at the system level (structural safety, traffic safety, durability of the 
whole system) 

- PIs at the network level (structure condition assessment + structure 

importance on the network). 

A Scenario is defined as an outline of a possible future event that assess the 

outcomes that an extreme event may have on a transport infrastructure – i.e., 
affecting one or more critical assets and/or disrupting users. Scenarios are defined 
within the so called “scenario-based risk analysis”, which is the process of 

analysing a set of multiple scenarios or “alternative worlds” with the aim of 
identifying potential risk and their linked hazards, to increase preparedness to 

handle them and minimize their impact. \A methodologic approach to the definition 
of Performance Indicators for RS-Satellite and RS-Terrestrial as baseline is 
proposed, based on the needs provided through the different scenario that will be 

exploited in the SAFEWAY pilot. 
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6.1 Performance indicators of satellite monitoring for infrastructures 

Within the dimensions of resilience, satellite remote sensing technology it’s very 
useful to support the preparation phase. This means that by means of satellite 

sensors it is possible to extract parameters related to the infrastructure conditions 
which allow the definition of the Performance Indicators.  

 

Figure 26. Satellite remote sensing monitoring of infrastructures to obtain PIs at a component 
level 

From Figure 26. it can be inferred the necessity of:  

- Define which aspects are the most relevant to assess in each scenario.  

- Define which aspects can be assessed with the RS-Satellite technology. 

Define how to translate the assessment to an objective Performance Indicator that 
allow its subsequent contribution to the infrastructure KPIs. 

For satellite monitoring technologies, the extracted PIs are at the System/Network 
level and the Performance Indicator can be built according to a rating index in 

terms of impacts of the infrastructures/surrounding stability and changes:  

 Rating Index 1: No or very slight impact of infrastructures/surrounding 
area changes.  

 Rating Index 2: Slight impact of infrastructures/surrounding area 
changes. If no measures are taken, the risk of negative impact on the 

infrastructure will increase. 

 Rating Index 3: Moderate to severe impact of 
infrastructures/surrounding area changes with no decrease in 

serviceability. Medium-term damages on the infrastructures may be 
expected. 

 Rating Index 4: Severe impact of infrastructures/surrounding area 
changes. The level of the damages of the infrastructure have to be 
instigated. 

 Rating Index 5: Extreme impact of infrastructures/surrounding area 
changes with possible consequences on the capacity of the 

infrastructure. The field inspection to detect the level of the 
damages/impact of the measured phenomena is suggested with priority. 

As seen in Figure 26, impact assessment has three different stages: 
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1- Impact detection: Localization of infrastructures/surrounding change. E.g.: 
infrastructures movements, illegal buildings, etc. 

2- Impact definition: Definition of the impacts nature. E.g.: subsidence due to 

natural phenomena and/or third party activities, new buildings constructions 
etc.  

3- Impact evaluation: Quantification/Qualification of the impact based on a set 
of threshold values. E.g.: Magnitude of the infrastructures/surrounding 
changes. 

These stages allow the categorization of the impacts as primary performance 
indicators at the network/system level. These indicators will be employed to define 

the infrastructure inspection priorities (rating indices defined above) and carry the 
results to the definition of KPIs.  

In (Stenström, Parida and Galar, 2012) several parameters and performance 

indicators are defined for railway infrastructures. Few of them are actually 
measurable with RS-Satellite technology, and in particular those related to the 

technical and condition indicators at the network/system level such as: 

- Embankments 

o Slope movements 

- Railways/Roads movements with millimetre precisions 

- Railways/Roads surrounding movements with millimetre precisions 

- New artificial structures detection and monitoring in the area surrounding 
the railways/roads  

- Marine erosion assessment to evaluate the impact on the railways/roads 
over the coastal zones   

- Identification of flood-prone areas along the railway/road networks.  

- Identification of third-party activity along the railways/roads that may 
negatively impact the infrastructure.  

Each infrastructure is measured with some parameters (e.g. ground/infrastructure 
displacement, surrounding area changes), and that measurements are translated 
to PIs (e.g. Potential roads/railways impact of the detected phenomena) specified 

with a rating index and with a location. 

Summarizing, Performance Indicators for RS-satellite will be defined at the 

system/network level, following the information in the Appendix. 

6.2 Performance indicators for terrestrial remote sensing monitoring of 
infrastructures 

Attending to (Quality specifications for roadway bridges, standardization at a 
European level, no date), inspection and monitoring, which are the activities that 

can be carried out by the terrestrial technologies presented in this report, aim at 
the evaluation and assessment of structural safety and reliability. 

These monitoring activities are associated with performance indicators: 
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- Results of individual monitoring tasks can be transferred into a general 
and objectified evaluation system e.g. via an evaluation matrix, with 
the objective of assessing any reductions of functionality. 

- Depending on the measurement task, different physical values can be 
collected at discrete time intervals. This information may enable 

predictions on the future behaviour of the physical values. Also, any 
change may be observed over time. 

The concept of Performance Indicator (PI) is really broad. Different infrastructure 

owners have their own performance indicators, but they can be clustered in 
different items such as PIs related to material properties, related to equipment 

and protection, related to geometry changes, etc. 

Performance indicators can also be categorized according to different levels, being 
PIs of a level an aspect or parameter of a higher level. For bridges, the following 

categorization has been made: 

- PIs at the component level (Pavement, curbs, sidewalks, drainage, 

lighting, signage...) 

- PIs at the system level (structural safety, traffic safety, durability of the 

whole system) 

- PIs at the network level (structure condition assessment + structure 
importance on the network). 

For terrestrial monitoring technologies, the extracted PIs should be at the 
component level, where a Performance Indicator can be built according to a rating 

index in terms of damage: 

 Rating Index 1: No or very slight damage. No measures required. 

 Rating Index 2: Slight damage, defects with no further deterioration. If 

no measures are taken, the predicted life time will decrease. 

 Rating Index 3: Moderate to severe damage with no decrease in 

serviceability. Medium-term maintenance and repair actions are 
necessary. 

 Rating Index 4: Severe damage. Maintenance measures are to be 

instigated as soon as possible. 

 Rating Index 5: Extreme damage with impact on the capacity of the 

structure. Repair must be performed immediately. 

As seen in Figure 27, damage assessment has three different stages: 

4- Damage detection: Localization of damage in the structure component. E.g.: 

Traffic sign damaged. 

5- Damage identification: Definition of the damage nature. E.g.: Loss of 

reflectivity properties.  

6- Damage evaluation: Quantification/Qualification of the damage based on a 
set threshold value. E.g.: Reflectivity approaching the lower limit. 

These stages allow the categorization of the damage as a primary performance 
indicator. These indicators will be employed to define the structure component 
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functionality (rating indices defined above) and carry these results to the definition 
of KPIs (note that these PIs may be intermediate indicators of the infrastructure 
performance that are used to define PIs on higher levels that have more direct 

influence on the KPIs). 

 

Figure 27: Terrestrial remote sensing monitoring of infrastructures to obtain PIs at a component 
level 

In Stenström, Parida and Galar (2012) several parameters and performance 
indicators are defined for railway infrastructures. Few of them are actually 

measurable with RS-Terrestrial technology (most of the PIs are managerial 
indicators which are related with parameters such as punctuality, speed 

restrictions or traffic volume), but some of them refer to the structure components 
such as: 

- Embankments 

o Ballast composition 

o Track stiffness 

o Ballast contamination 

o Moisture content 

- Track geometry 

- Track surroundings 

- Rail 

o Rail integrity 

o Rail profile, surface and fasteners 

- Switches and crossings 

- Electrification 

- Signalling 

Each component is measured with some parameters (e.g. rail integrity with 
temperature and longitudinal stress), and that measurements are translated to PIs 
(e.g. Potential rail breaks, buckling, actual rail breaks, specified with a rating index 

and with a location). 
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Regarding road infrastructure, an enumeration of PIs is found in (Haas et al., 
2009), which define measurable PIs in roads following Canadian and International 
Practice. However, these PIs are in a higher level than the component level, some 

examples are: 

- Number of accidents per million vehicle km 

- Number of restricted / closed lines 

- Emissions of GHGs, NOx, Sox, VOC 

- Vehicle noise 

- Vehicle operating costs 

- Response time to incidents 

These data cannot be gathered with remote sensing equipment, but with statistical 
analysis and specific sensors. 

In Hakkert, A.S, Gitelman, V. and Vis (2007), a study that is specifically focused 

on road safety PIs calculates the performance of road segments based on 
EuroRAP’s Road Protection Score. They extract some road characteristics that are 

relevant for this score: 

- Speed 

- Barrier (right, left, middle) 

- Median (width) 

- Side area cut (placement) 

- Side area embankment (placement) 

- Junctions (not signalized) 

- Junctions (signalized or roundabouts) 

- Intersection merging 

- Intersection access 

Summarizing, Performance Indicators will be defined at component level, following 
the information in the Appendix. 
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 Tables  

Table 10: SAR satellite missions and main parameters 

Satellite Mission 

Wave-
Length 

(cm) 

Life 

Status 

Resolution 

Az./Range (m) 

Repeat Cycle 

(days) 

Swath Width 

(km) 

Max. Vel. 

(cm/year) 

Incident Angle 

(degree) 

L Band 

J-ERS 23.5 1992_1998 18 44 75 48.7 35 

ALOS PALSAR 23.6 2006÷2011 ≈5/(7÷88) 46 40÷70 46.8 8÷60 

ALOS-2 

 
22.9 2014 

1/3 

(3÷10)/(3÷10) 

100/100 

14 

25 (Spot) 

50÷70 (Strip) 

350 (Scan) 

149.2 8÷70 

SAOCOM * 

(2 Sat) 
23.5 2018 (10÷50)/(10÷50) 8,16 20÷150 

268 

134 
20÷50 

Tandem-L * 

(2 Sat) 
23.6 2023 ≈ (7÷10)/(7÷10) 8,16 350 

268 

134 
30÷50 

NISAR * 

(L & S) 
24 & 12 2021 

6.4/(2÷6) (L) 

6.9/(2÷30) (S) 
12 >240 Km 

180 (L) 

90 (S) 
33÷47 

C Band 

ERS-1/2 5.6 1992÷2001 ≈6/24 35 100 14.6 23 



 
 

 

D3.1 – Data Acquisition Report - Appendices 94 

 

Satellite Mission 

Wave-
Length 

(cm) 

Life 

Status 

Resolution 

Az./Range (m) 

Repeat Cycle 

(days) 

Swath Width 

(km) 

Max. Vel. 

(cm/year) 

Incident Angle 

(degree) 

ENVISAT 5.6 2003÷2010 ≈6/24 35 100 14.6 19÷44 

RADARSAT-1 5.5 1995÷2013 ≈ (8÷30)/(8÷30) 
24 

 

45 (fine) 

100 (Strip) 

200 (Scan) 

20.4 20_50 

RADARSAT-2 5.5 2007 

≈3/3 

≈8/8 

≈26/25 

24 

10 (Spot) 

40 (Strip) 

200 (Scan) 

20.4 20÷50 

Sentinel-1 5.6 2014 20/5 6, 12 250 
85 

42.5 
30÷46 

Gaofen-3 5.6 2016 
≈1/1 

≈25/25 
29 

10 (Spot) 

130 (Strip) 
17.6 20÷50 

RADARSAT 

Constellation 
Mission * 

(3 Sat) 

5.5 2018 (3÷50)/(3÷50) 4÷12 30÷350 42÷125 20÷55 

X Band 

COSMO-SkyMED 

(4 Sat) 
3.1 2007 

1.0/1.0 

≈2.5/2.5 

≈30/30 

2, 4, 8, 16 

10 (Spot) 

40 (Strip) 

200 (Scan) 

17.7 

35.4 

70.7 

141.4 

20÷60 
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Satellite Mission 

Wave-
Length 

(cm) 

Life 

Status 

Resolution 

Az./Range (m) 

Repeat Cycle 

(days) 

Swath Width 

(km) 

Max. Vel. 

(cm/year) 

Incident Angle 

(degree) 

TerraSAR-X 3.1 2007 

1.0/1.0 

≈3.3/2.8 

≈20/20 

11 

10 (Spot) 

30 (Strip) 

100 (Scan) 

25.7 20÷55 

KOMPSAT-5 3.2 2013 
3/3 

1/1 
28 

5 (Spot) 

30 (Strip) 
10.4 20_45 

COSMO-SkyMED-
SG* 

(2 Sat) 

3.1 2020 (1÷3)/(1÷3) 8, 16 10÷40 
17.7 

35.4 
20÷60 

TerraSAR-X-NG * 

(constel. with PAZ) 

 

3.1 2020 (0.25÷30)/(0.25÷30) 11 

5÷20 (Spot) 

10÷24 (Strip) 

50÷400 

(TOPS) 

25.7 20÷50 

PAZ 

(constel. with 

TerraSAR-X) 

3.1 2018 (1÷6)/(1÷18) 11 

10 (Spot) 

30 (Strip) 

100 (Scan) 

25.7 20÷50 
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Table 11: Network assets and assessment capabilities of the proposed technologies 

Asset Technologies General Description 

BRIDGE 

BRIDGE 

OS 

RS 

LS 

PHTGR 

 

Type of bridge 
LS 

PHTGR 

- Arch 

- Flat Soffit 

- Both 

Material of construction 
LS 

PHTGR 
 

Type of road under Uncertain  

Signalization 
MLS, TLS 

PHTGRM 
Location, condition, reading 

Road vertical alignment LS  

Lightning 

TLS, MLS 

THRMGR~Semi 

PHTGRM~Semi 

Street lighting and traffic light control – Presence/absence 

Identification plates 
Uncertain 

(TLS, MLS; PHTGRM) 
Location 

Measured headroom 
TLS, MLS 

PHTGRM 
 

Collision protection beams 
LS 

PHTGRM 
Number, Location, Condition 

Supports 
TLS, MLS 

PHTGRM~Semi 
Condition (Piers, column…) 

Deck 

Geometrical 

characteristics 

LS 

PHTGRM 
- Nº decks, Space between two supports, Nº spans, Width 

perpendicular to the parapets, Lengths, Maximum soffit height 

- Some pathologies Health Monitoring 
LS~Semi 

PHTGRM~Semi 



 
 

 

D3.1 – Data Acquisition Report - Appendices 97 

 

Asset Technologies General Description 

Road above – Surface condition 
RS 

Uncertain 
 

Vegetation 

OS 

LS 

PHTGRM 

Presence/absence 

Health Monitoring (General) Uncertain (LS~Semi) Some pathologies 

Metal inspection Uncertain Some pathologies 

Masonry inspection Uncertain Some pathologies 

Timber inspection Uncertain Some pathologies 

Parapets, vehicle safety fences 

and handrails 

TLS, MLS 

PHTGRM 
Presence/absence, Minimum height, Defects and damage 

UNDERLINE BRIDGE 

Health monitoring 

RS 

LS 

THRMGR 

PHTGR 

- Some pathologies 

- Not all technologies available are good for every damage 

Position of tracks relative to the 

bridge 

LS 

PHTGR 
 

Flood 

RS 

LS~Semi 

PHTGR~Semi 

 

OVERLINE BRIDGE 

Health Monitoring 

LS 

THRMGR 

PHTGR 

- Some pathologies 

- Not all technologies available are good for every damage 

CULVERT 

Geometrical characteristics 

OS ~Semi 

TLS, MLS 

PHTGR 

Dimensions, Distances to track 
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Asset Technologies General Description 

Geometrical Inspection 

OS ~Semi 

TLS, MLS 

PHTGR 

 

Watercourse 

RS 

OS 

Uncertain (LS~Semi; 

PHTGR~Semi) 

Functionality, Scours 

Trash screen 
TLS, MLS 

PHTGR~Semi 

- Presence/ Absence 

- Blockage 

Bedstones, bearings, trestles, etc. 
LS 

PHTGR 
Settlement 

Arch barrel - Inspection 

LS 

THRMGR 

PHTGR 

 

River 

bank 

Geometrical 

characteristics 

OS ~Semi 

LS 

PHTGR - Position, form 

- Erosion 

Health Monitoring 

OS ~Semi 

LS 

PHTGR~Semi 

RETAINING WALLS 

Dimensions 

OS ~Semi 

LS 

PHTGR 

 

Position of tracks relative to the 

retaining walls 

LS 

PHTGR 
 

Health monitoring 

RS ~Semi 

LS 

THRMGR 

PHTGR 

 

- Some pathologies 

- Not all technologies available are good for every damage 
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Asset Technologies General Description 

Basket 

TLS, MLS~Semi 

THRMGR~Semi 

PHTGR~Semi 

Corrosion 

Gabions 

OS 

RS 

LS 

PHTGR~Semi 

Overturning, sliding 

Parapets, Handrails or Vehicle 

Safety Fences 

TLS, MLS~Semi 

PHTGR~Semi 
Condition 

Road 

 

Uncertain 

(PHTGR~Semi) 

Cracks 

TUNNELS 

Cracks 

RS 

Uncertain 

(PHTGR~Semi) 

Movements of the ground above the tunnel may be measured by 

means or RS   

Water ingress 

TLS, MLS 

THRMGR 

PHTGR~Semi 

 

Concrete and Masonry inspection 
TLS, MLS 

PHTGR 
 

Masonry inspection 
TLS, MLS 

PHTGR 
 

Metal inspection 

TLS, MLS 

THRMGR 

PHTGR 

 

Concrete and Metal 
TLS, MLS 

PHTGR 
 

  



 
 

 

D3.1 – Data Acquisition Report - Appendices 100 

 

Table 12. Legend for assessment capability tables 

 

  

*General information, not component details 

A Automatic 

M Semiautomatic 

N Not detectable 

? Not Applicable 
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 PILOT 1 (PORTUGAL) 

Table 13. Road bridge assessment capabilities for the different data acquisition technologies (Pilot 1 – Portugal) 

Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Wall 

Wall 

Wing wall 

A A A N M 

Superficial 

damage 
(porosity, 
spalling) 

M M N M M 

Parallel to the 
road 

Bulging A A N N M 

Wings 
Debris, 
waste, 
graffiti 

A A N N M 

Spandrel wall Cracks N N N N M 

Retaining wall Fractures M M N N M 

Foundation 

Continuous plinth 

N N N N N 

Corrosion 
(exposed 
rebars) 

M M N M M 

Piles Blistering N N N N N 

Soil preparation 
Water 

penetration 
A A N A M 

Slab 

Dimensions 
(height to 
contain 

embankmen
ts) 

A A N N M 

Beams 
Deflection, 

twisting 
A A N N N 

Micro-piles Vegetation A A M N M 

Embankment Slope 

On corner 

A A A A A 

Vegetation A A A N A 

Parallel to the 
road 

Cracks N N N N M 

Under the 
structure 

Fractures M M N N M 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Lining 

Artificial lining 

M M M M M 

Absence, 
instability of 

lining 
M M N N M 

Natural lining 
Drainage 
(damage, 
blockage) 

M M N N N 

 
Water 

accumulatio
n 

N N N N N 

 Settlement N N N N N 

Junctions 

Foundation 

Continuous plinth 

N N N N N 

Drainage 
system 

N N N N M 

Individual plinths 
Debris, 
waste 

N N N N N 

Piles Cracks N N N N N 

Slab Fractures M N N N M 

Beams Blistering N N N N N 

Micro-piles 
Corrosion 
(exposed 
rebars) 

M N N M M 

Other 

Superficial 
damage 

(porosity, 
bulging, 
spalling) 

N N N N N 

Beam seats 

On abutment wall 

A M N N M 

Scour N N N N N 

On abutment-
foundation wall 

Settlement N N N N N 

On pier       

Reinforced soil 
abutment 

      

Box-type 
abutment 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

(integrates wing 
walls) 

Barrel (masonry 
arch bridge) 

      

Pier 
protections 

Around the pier 

A N N N M 

      

Downstream       

Upstream       

Bearings Bearings 

Fixed bearing 

M N N N M 

Distortion, 
twisting 

N N N N N 

Fixed pin bearing 
Plinths 

(fractures, 
crushing) 

Fixed pot bearing 
Joint 

misalignme
nt 

Unidirectional 
sliding bearing 

Corrosion 

Unidirectional pot 
bearing 

Cracks, 
fractures 

Unidirectional 
roller bearing 

Crashing 

Unidirectional pin-
roller bearing 

Debris, 
waste 

Bidirectional 
elastomeric 

bearing 

Blockage of 
joint 

movement 

Bidirectional pot 
bearing 

      

Anti-seismic       

Support 
(substructure) 

Supports 

Pier 

A A M N M 

Cracks N N N N M 

Pier/pier cap Fractures M M N N M 

Transversal beam 
on pier 

Spalling M M N M M 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Continuous wall 
Corrosion 
(Exposed 
rebars) 

M M N N M 

Barrel (masonry 
arch bridge) 

Unfilled 
holes 

M M N N M 

Foundation 

Continuous plinth 

N N N N N 

Porosity N N N N N 

Individual plinths) Scour A M N N M 

Piles 
Water 

penetration 
A A N A M 

Micro-piles 
Graffiti, 
poster 

A A N N M 

Slab Settlement N N N N N 

Beams 
Broaden 
junctions 

N N N N N 

Protection 

Around the pier 

A N N N M 

Loss of 
material 

M M N N M 

Upstream/Downst
ream 

Vegetation A A M N M 

Cutwater 
Efflorescenc

e 
A A N M M 

Deck 

Towers Towers A A A N M Spalling M M N M M 

Supportive 
elements 

(superstructur
e) 

Truss (lower 
deck) 

A A M N M 

Cracks N N N N M 

Truss (upper 
deck) 

Fractures M M N N M 

Truss 
(intermediate 

deck) 
Distortion A A N N N 

Upper braced 
frame 

Corrosion 
(exposed 
rebars) 

M M N M M 

Lower braced 

frame 

Superficial 
damage 

(porosity, 
roughness) 

M M N M M 



 
 

 

D3.1 – Data Acquisition Report - Appendices 105 

 

Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Transversal 
braced frame 

Water 
penetration 

A A N A M 

Lower arch 
Drainpipe 
position 

M M N N M 

Upper arch Holes M M N N M 

Cable-stayed 
bridge 

superstructure 

Corrosion 
(exposed 
rebars) 

M M N N M 

Tied-arch bridge 
superstructure 

Broaden 
junctions 

N N N N N 

Suspension bridge 
superstructure 

Efflorescenc
e 

A A N M M 

Lower arch (open 
spandrel) 

      

Deck 

Deck slab 

A A N N M 

      

Ribbed slab       

Slab (cemented 
in-situ) 

      

Slad (cemented 
in-situ) with 

beams 
(prefabricated) 

      

Box-girder section 
(cemented in-

situ) 
      

Box-girder section 
(prefabricated) 

      

Vault (tunnel)       

Arch       

Solid slab       

Slab 
(prefabricated) 

with beams 
(cemented in-

situ) 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Slab with beams 
(both 

prefabricated) 
      

Other       

Ledge Ledge 

Prefabricated 

A A N N M 

Spalling M M N M M 

Made in-situ Fractures M M N N M 

 Vegetation A A M N M 

 
Loss of 
material 

M M N N M 

 
Location 

and 
attachment 

M M N N M 

 
Water 

penetration 
A A N A M 

Barrier/fence 

Barrier/fence 

Prefabricated 

A A N N M 

Deformation 
(due to car 
crashes) 

A A M N M 

Made in-situ 
Paint 

peeling 
N N N N M 

Other 
Assembling 
elements 

N N N N N 

Barrier ends 

Prefabricated 

A A N N M 

Attachment 
to the 

structure 
M M N N M 

Made in-situ 
Expansion 

joints 
A A N N M 

Other 
Spalling 

(concrete) 
M M N M M 

 
Cracks 

(concrete) 
N N N N M 

 
Fractures 
(concrete) 

M M N N M 

Guardrail 
Lateral/central 

guardrail 
W type A A N N M 

Deformation 

(due to car 
crashes) 

A A M N M 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Double W type 
Absence of 
elements 
(dampers) 

M M N N M 

"Skirt" type (steel 
flat screen) 

Assembling N N N N N 

Double metallic 
beam 

Corrosion M M N M M 

"New Jersey" type 
Expansion 

joints 
A A N N M 

Other 
Spalling 

(concrete) 
M M N M M 

Lateral/central 
curbs 

"Trief" type 

A A M N M 

Cracks 
(concrete) 

N N N N M 

Median curb 
Fractures 
(concrete) 

M M N N M 

Other 
Misalignmen

ts 
A A M N N 

Walkway 

Covering/overl
ay 

Accessible 
(Public) 

A A A A A 

Cracks N N N N M 

Non-accessible 
(Maintenance) 

Fractures M M N N M 

Infill 

Accessible 
(Public) 

N N N N N 

Spalling M M N M M 

Non-accessible 
(Maintenance) 

Absence of 
lining 

sections 
M M N N M 

 Settlement N N N N N 

 

Expansion 
joints (and 
protective 
covers) 

A A N N M 

 
Debris, 
waste 

N N N N N 

 
Corrosion 
(exposed 
rebars) 

M M N M M 

Pavement Pavement Bridge A A A M A Spalling M M N M M 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Tunnel Cracks N N N N M 

 Fractures M M N N M 

 Holes M M N N M 

 
Roughness, 
adherence 

N N N N M 

 Bulging A A N N M 

 Drainage M M N N M 

 Settlement N N N N N 

 
Debris, 
waste 

N N N N N 

Drainage Drainage 

Canal (ground 
level) 

A A A N M 

Location M M N N M 

Sink 
Rainwater 
drainage 

M M N N M 

Ditch 
Elements 
linkage to 
culverts 

N N N N N 

Deck piping 
Cracks, 

fractures 
N N N N N 

Canal (on top of a 
wall) 

Debris, 
waste 

N N N N N 

Canal (on the 
slope of an 

embankment) 
Blockage M M N N M 

Culverts 
Sediments 
in culverts 

M M N N M 

 
Protective 

covers 
A A M N M 

 
Grooves in 

slopes 
A A M N M 

 Leakage N N N N N 

Fixed A A N M M Unevenness A A N N N 
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Component Element Type 

Detection of elements Features 

to be 

inspected 

Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Expansion 
joints 

Expansion 
joints 

Movable 
Distortion, 
misalignme

nt 
A A N N N 

Other 
Broken or 
unattached 

sections 
A A N N M 

 Corrosion M M N M M 

 
Debris, 
waste 

N N N N N 

 
Filling 

material 
N N N N N 
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 PILOT 2 (SPAIN) 

Table 14: Subdimension: Monitoring – Remote Sensing (Pilot 2 – Spain) 

Component Subcomponent 
Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Structures 

Underpass / Overpass A A A 

? 

A A A M 

? 

N 

Tunnel A A N N A A N N 

Viaduct A A A A A M A M 

Slope of embankment 

Cut slope A A A 

? 

A A A A 

? 

A 

Embankment A M A A A M A A 

Tunnel entrance, cut 

and cover 
A A A A A A N N 

Culverts 
Drains A A N 

? 
M A A N 

? 
M 

Culverts A M N M A M N M 

Protection elements 
Handrail A A N 

? 
M A A N 

? 
M 

Anti-climb fencing A A N M A A N M 

Fencing 

Posts A A N 

? 

M A A N 

? 

N 

Gates A A N M A A N M 

Wire netting A A N M A A N M 

Vegetation 
Land cleaning A A A 

? 
A A A A 

? 
A 

Tree felling A A A A A A A A 

Track 

Rail track A A M 

? 

A A A N 

? 

N 

Fish plate joint A M N N M M N N 

Railway sleeper A A N M A M N N 

Ballast A A A A A A M M 

Railroad switch A A N N A A N N 

Expansion joint A N N N M N N N 
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 Pilot 3 (United Kingdom) 

Table 15: Subdimension: Monitoring – Remote Sensing: Terrestrial. Bridges – General (Pilot 3 –Uk) 

Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Bridge type - 

- Arch 

- Flat soffit 

- Both 

A A A N A A A A N A 

Material of 

construction 
- 

- Brick 

- Stone 

- Concrete 

- Wrought iron 

- Cast iron 

- Steel 

? A A A N A 

Road under - 
Type 

A A A N A 
A A A N A 

Recent resurfacing N N N N M 

Signalization - 

Condition 

A A N N A 

A A N N A 

Speed Limit N N N N A 

Headroom (Permitted 

vehicle height) 
N N N N A 

Weight restriction N N N N A 

Conflict between 

mandatory (roundel) 

and warning 

(triangular) signs 

N N N N M 

Chevron A A N N A 

Hazard warnings 

(arch) 
N N N N N 

Road traffic signs 

illuminated? 
N N N N M 

Are there any 

distracting adverts 

adjacent to the 

bridge? 

N N N N M 
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Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Road - Vertical alignment A A A N A A A A N N 

Lightning (Street 

lighting and traffic 

light control) 

- Presence / Absence A A N A A A A N M A 

Identification 

plates (road and 

track level) 

- 

Plates erected? 

A A N A A 

A A N N A 

Clean? A A N N A 

Telephone number on? N N N N N 

- - Measured headroom A A N N A A A N N A 

Collision protection 

beams 
- 

Number 

M M M N M 

M M M N M 

Location A A A N A 

Condition M M M N M 

Supports 
- Pier / Trestle 

- Column / Cylinder 
Condition A A A N A A A N N M 

Deck 

- Number of decks 

A A A N A 

A A A N A 

Span 

Space between two 

supports 
A A A N A 

Number of spans A A A N A 

Width perpendicular to 

the parapets 
A A A N A 

Lengths: 

- Parallel to parapets 

- Perpendicular to 

abutments 

A A A N A 

Maximum soffit height A A A N A 

- End support 

- Intermediate 

supports 

Spalling M M N M M 

Corrosion M M N M M 

Timber deterioration M M N N M 

Road above - Surface condition A A A N A N N N N N 

Vegetation - Presence / absence A A A N A A A A N A 

General - Cracking ? ? ? ? ? N N N N M 
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Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

- Spalling M M N M M 

- Bulging M M M N M 

- Fire damage N N N N N 

Metal 

- Corrosion 

? ? ? ? ? 

M M N M M 

- Loss of section N N N N N 

- Tears N N N N N 

- Fracture M M N N M 

- Cracked welds N N N N N 

- Buckling A A A N M 

- Permanent distortion A A A N A 

- Displacement A A A N A 

- Abrasion M M N M M 

- Flaking or blistering N N N N M 

- 
Loss of coating to 

parent metal 
N N N N M 

- Impact N N N N N 

Masonry 

- Loss of material 

? ? ? ? ? 

M M M N M 

- Weathering N N N N M 

- 
Deformation (Bulging, 

distortion, tilting) 
A A A N A 

- Cracking N N N N M 

- 
Loosening and/or 

wedging 
A A N N A 

- Spalling M M N M M 

Timber 

- Wetness 

? ? ? ? ? 

A A N M A 

- Splits/shakes N N N M M 

- 
Corrosion of bolts, 

screws… 
M M N M M 

- Missing bolts, screws… M M N N M 

- 
Surface softening/fire 

damage 
N N N N M 
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Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

- Loss M M N N M 

- 
Permanent 

displacement 
A A A N A 

Parapets, vehicle 

safety fences and 

handrails 

- Presence/Absence 

A A N N A 

A A N N A 

- 
Minimum height of the 

parapets 
A A N N A 

- Defects and damage M M N N M 
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Table 16: Subdimension: Monitoring – Remote Sensing: Terrestrial. Underline Bridge (Pilot 3 –Uk) 

Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Masonry arch 

bridge 

Spandrel wall Separation A A A N A A A A N A 

Ring Separation A A N N A A A N N A 

- Bulging 

? 

M M N N M 

- Water penetration A A N M M 

- Dropped stones/bricks M M N N M 

- Spalling M M N M M 

- Cracking N N N N M 

- Evidence of bridge strike N N N N N 

Observations 

under moving 

loads 

- 
Abnormal movement or 

evidence of settlement 

? 

M M M N M 

- 

Deflection, lateral sway, 

twisting, looseness or 

vibration 

A A A N A 

- 

Separation or differential 

vertical or horizontal 

movements of parts of a 

Bridge 

A A N N A 

- 

Lifting and “hammering” 

of a girder off its 

bearings 

M M N N M 

Railway track - 

Lateral and vertical 

position of the tracks 

relative to the bridge 

A A A N A A A A N A 

Bridges over 

watercourses 
- 

Changes in the 

watercourse regime 

(flood) 

A A A N M M M M N M 

Survey of river bed - 

Bed levels  around piers, 

abutments and at 

sections across the river 

M M M N M N N N N N 
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Table 17: Subdimension: Monitoring – Remote Sensing: Terrestrial. Overline Bridge (Pilot 3 –Uk) 

Description Component 
Damage 

/ Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Footbridges 

Stairs, treads, 

risers, landings, 

stringers and 

balustrades 

Condition A A A N M A A A N M 

- Glazing and cladding M M M N M N N N N N 

Canopies and their 

supporting 

elements 

Condition A A A N M A A A N N 

Lift shafts and 

escalator supports 
Condition N N N N N N N N N N 

Fatigue susceptible 

elements 

- Cracking 
? 

N N N N M 

- Water seepage A A N M M 
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Table 18: Subdimension: Monitoring – Remote Sensing: Terrestrial. Culverts (Pilot 3 –Uk) 

Description Component 
Damage 

/ Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

General 

Culvert 

 

Dimensions 

A A N N M 

A A N N A 

Distances to track A A N N A 

Deflection, lateral 

sway, twisting, 

looseness or vibration 

A A N N M 

Separation or 

differential vertical or 

horizontal movement 

of parts 

A A N N M 

Lifting, and 

“hammering” of a 

girder off its bearings 

M M N N M 

Watercourse 

Functionality 

A A A N M 

M M N N M 

Depth of water (water 

level) 
N N N N N 

Scours M M M N M 

- 
Approach ditch 

functionality 
? ? ? ? ? A A N N N 

Silt Depth N N N N N N N N N N 

Trash screen 
Presence/ Absence 

A A N N M 
A A N N M 

Blockage A A N N M 

- Lack of air flow ? ? ? ? ? N N N N N 

- 
Biological / toxic 

Hazard / fumes 
? ? ? ? ? N N N N N 

- Confined spaces ? ? ? ? ? N N N N N 

Services in culvert 
Do they prevent or 

restrict examination? 
N N N N N N N N N N 

Bed stones, 

bearings, trestles, 

etc. 

Settlement A A A N M A A A N A 
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Description Component 
Damage 

/ Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Masonry culvert Arch barrel 

Separation from 

spandrel wall / 

headwall 

A A N N A 

A A N N A 

Ring separation or 

drumminess 
A A N N A 

Bulging M M N N M 

Dropped stones or 

bricks 
M M N N M 

Spalling M M N M M 

Cracks N N N N M 

River bank 

- Position 

M M M N M 

A A A N A 

- Form M M M N M 

- Condition N N N N N 

- Erosion M M M N M 
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Table 19: Subdimension: Monitoring – Remote Sensing: Terrestrial. Retaining Walls (Pilot 3 –Uk) 

Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

Retaining wall 

- Dimensions 

A A A N A 

A A A N A 

- 

Position of the tracks 

relative to the retaining 

wall 

A A A N A 

- 
Damage in movement 

joints 
M M N N M 

- 
Displacement of one part 

of a RW relative to another 
A A A N A 

- 
Percloration of water 

through a joint 
N N N M M 

- 
Loss or deterioration of 

filler or sealant 
N N N N N 

- Corrosion of steel piles M M N M M 

- 
Overturning/sliding 

forward of the wall 
A A N N M 

- Changes in alignment A A A N A 

- Loss of material M M N N M 

- Deformation A A A N A 

- Cracking N N N N M 

- Wedging A A N N A 

- Basket 
Corrosion 

M M M N M 
M M N M M 

Spilling of infill N N N N N 

- Gabions 

Overturning 

M M M N M 

A A A N M 

Sliding A A A N M 

Bearing failure N N N N N 

- 

Parapets, 

Handrails or 

Vehicle Safety 

Fences 

Condition A A N N A M M N N M 

- Road Cracks A A A N A N N N N M 
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Table 20: Subdimension: Monitoring – Remote Sensing: Terrestrial. Tunnels (Pilot 3 –Uk) 

Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

General - 
Crack 

? ? ? ? ? 

N N N N M 

Water ingress A A N A M 

Concrete and 

Masonry 
- 

Spalling M M N M M 

Hollow/drummy M M N N M 

Bulging M M N N M 

Masonry - 

Brick/stone open 

joints 
A A N N A 

Loss of bricks/stones M M N N M 

Missing bricks/stones M M N N M 

Metal - 

Corrosion/Loss of 

section 
M M N M M 

Distortion, 

displacement 
A A N N A 

Concrete and 

Metal 
- 

Stepped segment/ring M M N N M 

Loose fixings M M N N M 
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Table 21: Subdimension: Monitoring – Remote Sensing: Terrestrial. Coastal, Estuarine and River Defences (Pilot 3 –Uk) 

Description Component 
Damage / 

Measurements 

Detection (of elements) Extract information* / Detect changes 

TLS MLS ALS THRMGR PHTGRM TLS MLS ALS THRMGR PHTGRM 

- Track 
Misalignment, heave 

or subsidence 
A A A N A A A A N M 

- Ballast Loss of ballast A A A N A M M M N M 

- 

Structure, 

parapets, wave 

return walls and 

adjacent ground 

and buildings 

Crack A A A N A N N N N M 

- - 

Leakage or seepage ?     A A N M M 

Flooding A A A N A M M M N M 

Voids A A A N M M M M N M 

Scour / undermining 

of the toe 
A A A N M M M M N M 

Tilting ?     A A N N A 

Sliding M M M N M A A N N M 

Defence 

- 
Beach or foreshore 

level 
M M M M M M M M N M 

Groynes and 

Breakwaters 
Condition A A A N A M M N N M 

Rock armour, 

concrete 

revetments, rip-

rap, gabions… 

Condition M M M N M M M N N N 

Position A A A N A M M M N M 
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